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MODELLING  LAVA  FLOWS  BY  CELLULAR  AUTOMATAMODELLING  LAVA  FLOWS  BY  CELLULAR  AUTOMATA
andand

EXAMPLES  OF  SIMULATIONS  OF  ETNEAN  EVENTSEXAMPLES  OF  SIMULATIONS  OF  ETNEAN  EVENTS

Salvatore Di Gregorio

Department of Mathematics, University of Calabria,
Arcavacata, I-87036 Rende (CS)

EMPEDOCLES RESEARCH GROUP

Contents:

CA criteria for modelling macroscopic phenomena
A practical approach for modelling surface flows  
SCIARA: a Cellular Automata Model for the Simulation of 

lava flows
Results of simulations: last Etnean eruptions
Comments and conclusions.
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Finite Automaton

A = (I, S, O, σ, δ)

I,  S,  O finite sets of Input, States and Output

σ :  I x S  -->   S state transition function
δ :  I x S  -->   O output function

s∈S

s’∈S

t

t+1

i∈I

o∈O
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Cellular Automata (CA) 
 

a fragment of a 
two-dimensional 
Cellular 
Automaton

Intuitively a homogeneous Cellular Automaton (CA)
can be seen as a d-dimensional space, partitioned in 
cells of uniform size, each one embedding an 
identical finite automaton, the elementary automaton 
(ea).

Input for each cell is given by the states of the neighbouring cells, where the neighbourhood conditions 
are determined by a pattern invariant in time and space.
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At the time t=0, cells are in arbitrary states and the CA evolves changing the state at discrete times, 
according to the transition function.
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Cellular Automata

SOME CA CRITERIA FOR MODELLING MACROSCOPIC PHENOMENA

First requirement: the abstract CA must be related univocally to real 
phenomenon 

The cell corresponds usually to a portion of the space; so the cellular 
space must be three dimensional.

Global parameters must be considered: 
at least the size of the cell and the time corresponding to the CA
transition step; 

These two parameters may effect the transition function implicitly. 
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Cellular Automata
SOME CA CRITERIA FOR MODELLING MACROSCOPIC PHENOMENA

Second requirement: the phenomenon macroscopicity needs compositeness of 
states and transition function

Each characteristic, relevant to the evolution of the system and relative to the 
space portion corresponding to the cell, is individuated as a substate; the set Q of 
the states is given by the Cartesian product of the sets of substates: 
Q = Q1 × Q2 × ....... × Qn ; the substates are constant in the space occupied by the 
cell (e.g. the temperature).

As the state of the cell can be decomposed in substates, the transition 
function may be split in many “elementary” processes: local interactions and 
internal transformations:

Local interactions are changes due to interactions of substates in the 
neighbourhood.
Internal transformations are a borderline case of local interaction, defined as 
the changes in the values of the substates due to cell internal conditions 
(substates inside the cell),



U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Cellular Automata

A  PRACTICAL  APPROACH  FOR  MODELLING  SURFACE  FLOWS

First consideration: Two dimensions may be sufficient, because the third 
dimension may be regarded as a substate and inserted in the state of the cell 
(e.g. the altitude for phenomena concerning the earth surface).
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Cellular Automata

A  PRACTICAL  APPROACH  FOR  MODELLING  SURFACE  FLOWS

Second consideration:  The flows may be expressed as a substate, they must 
be managed in terms of local interactions and must minimize locally 
unbalance conditions. An algorithm for the differences minimisation  have to 
be expressed in the context of discrete space and time and bounded by the 
cell neighbouring.

Third consideration: A relaxation rate, depending on both the cell size and 
the duration of the CA step, must be considered because the minimum 
“imbalance” conditions cannot be always achieved in a CA step. This 
mechanism involves particular care in the space and time settlement: the size 
of the cell limits at the top the CA step, because the outflow rate may not be so 
rapid that the outflow overcomes the neighbourhood boundaries in a step.



U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Cellular Automata
OUTFLOWS DETERMINATION BY THE MINIMISATION ALGORITHM

Local conditions for minimum unbalance conditions are determinant for the evolution 
of the system

Problem: Outflows from the central cell to the other n neighbouring cells 
must be determined in order to minimise the differences of a 
quantity q in the neighbouring cells: 

Definitions qd = quantity, that may be distributed, in the central cell
q0 = irremovable quantity in the central cell
qi = quantity in the cell i   1≤ i ≤ n
fi = outflows from the central cell    0≤i≤n (f0 is the part of qd
remaining in the central cell)
qi’ = qi + fi 0≤i≤n
q’min is the minimum value for qi’ 0≤i≤n

Bounds qd = Σi fi 0≤i≤n
Σi (qi’- q’min) must be minimised by the values of fi
( 0≤i≤n )
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Cellular Automata

Minimisation (a) All the neighbouring cells are “not eliminated”:  A is the  
Algorithm set of not eliminated cells

(b) The “average q” (av_q) is found for the set A of not 
eliminated cells:          

av_q = (qd + Σi qi)/#A    i∈A
(c) The cell x with qx > av_q is eliminated
(d) Go to step (c) until no cell is eliminated.
(e) fi = av_q - qi i∈A fi = 0    i∉A

Relaxation The relaxation rate accounts for the determination 
rate r of the part of flow that is effectively transferred in 

the neighbour cell from the central cell in a CA step.

OUTFLOWS DETERMINATION BY THE MINIMISATION ALGORITHM
(continued)



U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

Cellular Automata

f2=2        f4=7

f0=f1=f3=0 

av_h=156/2=78
no cell is 

eliminated

av_h=320/4=80
cells 0 and 3 are 

eliminated

av_h=420/5=84
cell 1 is eliminated

71:7717171

76:2818376*9*7681:9837681:983

100**100

EXAMPLE OF DISTRIBUTION (von Neumann neighbouring):

4

203

1

qd = 9,   q0 =  81,   q1 =  100,   q2 =  76,   q3 = 83,   q4 =  71,
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CA and CA and CACA--likelike modelsmodels forfor lava lava flowflow simulationsimulation

Barca, Crisci, Di Gregorio, Nicoletta (1986-89).
First approach to the Cellular Automata Model. Three and two dimensional 
models with discrete time and space, allowing multiple flows;
Ishihara et al. (1988, 1989). 
Starting from Navier-Stokes equations, adopting a space tessellation and 
discrete time. However, not applicable to multi-flows and/or extruded 
intermittently flows;
Young and Wadge (1990).
Cellular Automata approach with simulation of simple advancing lava flow 
fronts (FLOWFRONT);
Crisci, Di Gregorio, Rongo, Spataro (1990-2002)
Cellular Automata Model with the minimisation algorithm (SCIARA). 
Miyamoto H. and Sasaki S. (1997)
Simulating lava flows by an improved cellular automata method. They 
solved the problem of spurious symmetries with a probabilistic method
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SCIARA
SCIARA: Simulation by Cellular Interactive Automata of the

Rheology of Aetnean lava flows (release hex1)

SCIARA = <R, X, L, Q, P, σ, γ>

• R = {(x, y)| x, y ∈ N, 0 ≤ x ≤ lx, 0 ≤ y ≤ ly}  is the set of points with integer 
co-ordinates in the finite region, where the phenomenon evolves. N is the set 
of natural numbers.
• L⊂R specifies the lava source cells

• X = {(0,0), (0,1), (0,1), (1,0), (-1,0), (-1,1), (1,-1)} 
is the set, which identifies the geometrical pattern of 
the cells, which influence the cell state change.

0,0

0,1-1,1

-1,0

0,-1

1,0

1,-1

The finite set Q of states of the ea:        Q = Qa × Qth × QT × Qo
6 × Qi

6

lava outflow (inflow)Qo (Qi)

lava temperature in the cellQT

lava thickness in the cellQth

altitude of the cell Qa
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SCIARA Parameters

SCIARA (release hex1)

• P is the set of global parameters of SCIARA        
P = {pc, pt, padh_v, padh_s, pTv, pTs, pr, pc}

1.4 10-14 (m/K)3cooling parameter pc

1relaxation ratepr

1123 Klava temperature at solidificationpTs

1373 Klava temperature at the ventspTv

10 mlava adhesion at the solidificationpadh_s

0.7 mlava adhesion at the ventspadh_v

60 stemporal correspondence of a step of SCIARApt

5 mside of the cellpc
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SCIARA Transition Function

• σ: Q7→Q is the deterministic transition function of the CA

QTQTQth× QT lava cooling

Qth, QTQth, QT(Qi × Qo)6 ×Qth × QT
7lava mixing

Qo
6 , Qi

6Qo
6(Qa × Qth)7 × QTlava outflows 

Qa , Qth∆(Qa , Qth)Qth× Qa×QTsolidification

updatingvariations/determinationsinputelementary process in order

• γ:L×N→ Qth specifies the emitted lava from the source cell at the step 
s, (s∈N)



U
n

iv
e

r
s

it
U

n
iv

e
r

s
it

U
n

iv
e

r
s

it
àà à

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

d
e

l
l

a
 C

a
l

a
b

r
ia

SCIARA Transition Function

SCIARA (release hex1) transition function σ

0

21
4

5

3

6

Internal transformation       SOLIDIFICATION   σS: Qth × Qa × QT → Qa × Qth

The cell altitude remains unchanged until solidification condition holds: (QT < pTs), 
then the altitude is increased by the lava thickness and lava thickness is zeroed.
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SCIARA Transition Function
Local interaction:   LAVA OUTFLOWS   σLO: (Qth× Qa)7 × QT → Qo

6

Lava’s rheological resistance is strongly dependent on temperature and 
the resistance increases as the temperature decreases. Due to difficulties in 
specifying lava rheology and and its variation with temperature, we use an 
adherence parameter v that represents the amount of lava that remains in 
each cell at each step.

T

A

Ts Tc

V1

V2

v=a e-bT
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SCIARA Transition Function
Local interaction:   LAVA OUTFLOWS   σLO: (Qth× Qa)7 × QT → Qo

6

Minimisation algorithm application
qd = quantity, that may be distributed, in the central cell = Qth - adhesion
q0 = irremovable quantity in the central cell = Qa + adhesion
qi = quantity in the cell i   1≤ i ≤ 6 = Qa + Qth
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SCIARA Transition Function

Local interaction: LAVA MIXING       σLM: Qth× Qi
6 × Qo

6 × Qr
7 → Qr

Lava mixing involves the determination for the central cell: 

a) the remaining lava thickness (rem_th):rem_th = Qth[0]-Σj QO[j]   1≤j≤6

b) new lava thickness (new_th): new_th = rem_th+Σj Qi[j]     1≤j≤6

c) the temperature variation by mixing is calculated as the average weight of QT, 

by considering both the remaining lava and the inflows:

new_T = (rem_th* QT [0])+Σj(Qi[j]*QT[j]))/(rem_th+Σj Qi[j])   

1≤j≤6
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SCIARA Transition Function

Internal transformation LAVA COOLING        σLC: Qth × QT → QT

Temperature drop due to irradiation at the surface is computed, assuming that other 
losses are not relevant: 

3 3 )/(1_ thcTT QpQQTnew ⋅+=

3 33 3 131 )V/pAT(/T)cV/()tAT(/TT avavavav +=∆+= ρεσ

where ρ is the lava density, c the specific heat, V the volume, σ the Stephan-
Boltzmann constant, T the absolute temperature of the surface, A the surface 
area of the cell, ε is the surface emissivity, ∆t (∆t = t2−t1), the time interval, 
is the step of the CA, p=3εσ∆t/ρc is the “cooling parameter”, with 3σε/ρc
describing the lava’s physical properties. Moreover, ∆t is dependent also on 
the cell side dimension.

from
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Model validation
Model validation

(Valle del Bove, Mt Etna, 
1991)

Real event

Square tessellation

Hexagonal tesselation

New explicit velocity model
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SCIARA Real Application
SCIARA (release hex1): simulation of the July 2001 Etnean eruption

The Etnean eruption started the 18th of July 2001 
at an elevation of ca.2100 m, near Nicolosi (Sicily).
The lava threatened Nicolosi, however stopping after
10 days (maximum lava field length).
Simulation with SCIARA were carried to develop 
future scenarios and/or possible human intervention.
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Scenario of 2001 Etnean event

A possible future scenario
after 40 days at 12 m3/s 
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Scenario of 2001 Etnean event

A possible future scenario for Nicolosi after 100 days at 24 m3/s
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2002 Etnean eruption simulation

Real vs simulated event in 2002 Etnean eruption
(Linguaglossa)

Real event

Simulation with
only a vent
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Comments and Conclusions (1)

Cellular Automata represent an alternative approach to differential equations in 
modelling complex systems, whose evolution is strongly dependent on local interactions of 
their constituent parts.

The empirical method, here introduced, was successfully applied by the research group 
“Empedocles” to other macroscopic complex phenomena, such as soil contamination and 
bioremediation, forest fires, soil erosion by rain; new application fields are considered: 
pyroclastic flows, marine environment evolution.

This empirical method permits to start with simple models, whose refinement can be 
performed in an incremental way, introducing other internal transformations and local 
interactions. This allows a careful monitoring of the model building phase by comparison 
between real phenomena and simulations.

This empirical method involves, for each internal transformation or local interaction, 
the introduction of problem-specific parameters, whose determination may be performed 
by applying optimization methods to minimize the difference between model results and 
experimental data. Genetic algorithms were effective for applications with several 
parameters.
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Comments and Conclusions (2)

It is important to define the limits to the application of the model to similar 
phenomena: e.g., SCIARA was validated for the Etnean lava flows in 1986/7 
eruption and 1991/2 eruption. SCIARA application during the eruption in the 
2001 Summer for the hazard analysis was possible, because Etnean lavas 
features don’t change significantly in the time. Cases, where the features 
change, involve a validation considering an interval of possible values of 
parameters, corresponding to different typologies of cases. 

This point is crucial; investigantions showed that there are different 
confidence intervals for phenomena of the same type.

A last consideration can be added: the decomposition of the complex 
macroscopic phenomenon in internal transformations and local interactions 
seems to have encouraged interdisciplinary cooperations and exchange of 
information, at least in the case treated here.


