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& Cellular Automata;

& Lava Flow Modelling;

&-Quick Model Overview;
& Etnean July 2001 Eruption;

= Simulations & Future Scenarios.
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ErI Ldva FiOW VModciing

Lava Flows show complex behaviour;

Need for Navier-Stokes equations, BUT:

They are Differential Equations!!!

Major Complexities arise due to irregular
ground topography and because lavas
range rheologically from Newtonian fluids

to brittle solids.




=y I LCliulidl’ AULOITdld (LA)
& Mathematical tool for modelling natural
phenomena;

&-Conceived in the 1950s by J. Von Neumann
to investigate self-reproduction...

&-CA approach involves /ocality (cell state
interaction) and wniformity (same evolution
for each cell);

&-CA = discrete time and space (usually square

or hexagonal grid).
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= Enviromental Issues: Lava Flows,

Landslides, Contamination, Bioremediation,
Earthquakes, Forest Fires, Soil Erosion,
etc...;

=-Bio-medicine: Immunology system,
Cancer cell growth;

= Industrial applications: Coffee
percolation (ILLY), Tire mixture (PIRELLI);

= Fluid-dynamics, Traffic, ETC...
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&-CA can be seen as a d-dimensional space (i.e. grid),
partitioned in cells of uniform size each one
embedding an /dentical finite automaton

&-Input for each cell is given by the states (i.e.
altitude, temperature, outflows) of the neighbouring
cells.

& From time t=0, the CA evolves changing the state at
discrete times, according to the transition function.
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=y | LA NCIJNDOUIrMOOas

A set of regular square or hexagons cover the finite
region where the phenomenon evolves.

Each square hexagon is individuated by a pair of
integers (X,Y):

2,2 | -1,2 0,2 1,2 2.2

2,1 | -1,1 0,1 1,1 2.1

-2,0 -1,0 0,0 1,0 2,0
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SCIARA is a Cellular Automata based model for

the simulation of lava flows

Its possible applications can be:

= The long term forecasting of the flow direction at various
eruption rates;

= The creation of microzonal hazard maps through a statistical
approach, by simulating different lava events;

=-The ability to follow the progress of an event and predict its
evolution;

=-The simulation of the possible effects of intervention (canals,

embankments, etc) on flows for stream deviation.
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=y | LAVA OSIlITIUIAlION MOJAECIS (DY OUNErS)

E-Barca, Crisci, Di Gregorio, Nicoletta (1986-89).

First approach to the Cellular Automata Model. Three and two dimensional
models with discrete time and space, allowing multiple flows;

E-Ishihara et al. (1988, 1989).

Starting from Navier-Stokes eqguations, adopting a space tessellation and
discrete time. However, not applicable to multi-flows and/or extruded
intermittently flows,

~ E-Young and Wadge (1990).

Cellular Automata approach with simulation of simple advancing lava flow
fronts (FLOWFRONT),

&-Miyamoto H. and Sasaki S. (1997)

Simulating lava flows by an improved cellular automata method. They
solved the problem of spurious symmetries with a probabilistic method;

E-McBirney, A.R., Murase, T. (1984)

Study of rheological properties of magmas ;
&-Kilburn, C.R.]., Lopes, R.M.C. (1991)

Study of temperature mixing in aa flows.
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The finite states of each cell are:
1. Cell altitude (e.g. 2000 a.s.l) : varies due to lava
solidification;

2. Cell lava thickness (e.g. 6 m): varies due to in-
coming and out-going lava flows;

3. Cell lava outflows (6) towards neighbouring
cells: calculated by minimizing lava heights
among neighbours;

4. Cell lava temperature (e.g. 1200 K®): varies by
(1) averaging temperature from incoming flows

and (2) thermal energy losses at surface.




=r | FOrmally Speaking: (1)
I &= The CA formal definition, 1s given by
ASCIARA — (Ra La Xa S: G, Y)

where:

-R = {(X, y)| X, y €V, 0=x<Ix, 0<y<ly} 1s the set of hexagonal
cells in the finite region where the phenomenon evolves.

- LcR specifies the lava source cells.

- The set X 1dentifies the geometrical pattern of cells that
influence the cell state change.

X = {Center, NW, NE, E, SE, SW, W};

-




=y | FOrmally Speaking: (£)

&-The finite set S of states of the ea:
S=S, xS, xS;xS$

where :
&S, represents the altitude of the cell;

&S, represents a parameter correlated to the lava thickness in
the cell;

~ BS represents a parameter correlated to the temperature of
the lava 1n the cell;

&S, represents a parameter correlated to lava outflows from
the cell toward the six neighbourhood directions.

&0 : S, > S is the deterministic state transition for the cells
in R

= v:S,x N— S, specifies the emitted lava from the source
cell at the time t. In this case the set of natural numbers NV

represents the time intervals of the CA.
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= At the beginning of time we specify the states of

the cells in R, defining the 1nitial configuration of
the CA.

- B At each following step the function o is applied to
all cells in R, at the same time the function y
corrects the substate S, for cells in L, so that the
configuration is changed in time and the evolution

of the Aq-ara 18 Obtained.
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= Cell Altitude at step t+1 is increased by the
thickness of lava, once the lava temperature
drops to a minimal value so that motion is
blocked (solidification) (i.e automatic
morphology updating)

= At the same time the lava thickness of the

cell is reset to zero
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Results from earlier simulations on Etnean flows

suggest that the Etnean examples are

reasonably represented by v,=7 m for T.=1123
Kand v,=0.7 m for T.=1373 K

Vl
—bT
\\ v=ae "

V2




ErI lEMpErature drop computation o>+

& Tt is assumed that lava inside a cell can be treated as
though thermally well mixed;

&-It might seem like a major simplification but, as
suggested by Kilburn & Lopes (1991), it does yield a
characteristic cooling time scale comparable to the
typical emplacement times of aa flows, thus:

&-Two step calculation:

1) Averaging temperature of residual lava inside a cell and
incoming lava;

2) Estimation of temperature drop due to thermal energy losses

at the surface




=y | | EMpPerature
| = That is:
1)

res lava xT[O]+ ZZ; (ﬁ[i]XT[i])

av _temp =

6
res _lava +Z ﬁ[l]
i=1

2)

T=T, /Y143 scdAt)/ pcV =T, 131+(T7 pa/ V)

-
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=-The value of the lava thickness inside a
cell during a CA time-step is computed
by adding inflows towards the cell,
subtracting eventually outgoing flows
towards neighbouring cells, to the
remaing lava inside the cell (adherence)

-
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=-The outflows depend on the hydrostatic pressure
gradients among the cells;

= The algorithm is based on the minimisation of the
differences of heights between neighbouring cells

I E-Moreover, the lava rheological resistance depends on
temperature (resistance /ncreases as temperature
decreases) (McBirney & Murase, 1984);

=-We have chosen to model rheological resistance in
terms of an adherence parameter, which represents
the amount of lava remaining in a cell at each step.

-




Minimisation aigorichim (outline:)

& The outflow from a cell is calculated by minimizing the
differences of heights between the neighbouring cells.

30 *
13 2+15 7 13 | 2+15 7
3 3
av_height = 70/5 =14 av_height = 40/4 =10
neighbour cell 1 is eliminated neighbour cell 3 is eliminated
* 30
* 2+15 7 13 9 9
3 9
av_height = 27/3 =9 heights after the lava

no cell is eliminated distribution
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I = In the transition function intervene

parameters which characterize globally the
CA and therefore the lava flow in its
physical properties:

Cell dimension (5m);

Cooling parameters;

Lava emission and solidification temperature
(1373 Kand 1123 K);

Lava adherence at vent (e.g. 0.7m);
Lava adherence at solidification (e.g. 7m);

— Constramts are:
1. Topography and location of the vents;
2. Lava discharge rate.

= examples

A S e




