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LEllular AUtomata ( CA)

Intuitively a homogeneous Cellular Automaton (CA) a fragment of a
can be seen as a d-dimensional space, partitioned in
cells of uniform size, each one embedding an
identical finite automaton, the elementary automaton

(ea).

two-dimensional
Cellular
Automaton

Input for each cell is given by the states of the neighbouring cells, where the neighbourhood conditions
are determined by a pattern invariant in time and space.
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At the time 7=0, cells are in arbitrary states and the CA evolves changing the state at discrete times,
according to the transition function.
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SOME CA CRITERIA FOR MODELLING MACROSCOPIC PHENOMENA

First requirement: the abstract CA must be related univocally to real
phenomenon

=-The cell corresponds usually to a portion of the space; so the cellular
space must be three dimensional.
=, Global parameters must be considered:
at least the size of the cell and the time corresponding to the CA
transition step;

These two parameters may effect the transition function implicitly.
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SOME CA CRITERIA FOR MODELLING MACROSCOPIC PHENOMENA

Second requirement: the phenomenon macroscopicity needs compositeness of
states and transition function

= Each characteristic, relevant to the evolution of the system and relative to the
space portion corresponding to the cell, is individuated as a substate; the set Q of
the states 1s given by the Cartesian product of the sets of substates:

0=0,x0, Xau... x Q, ; the substates are constant in the space occupied by the
cell (e.g. the temperature).

= As the state of the cell can be decomposed in substates, the transition
function may be split in many “elementary” processes: local interactions and
internal transformations:

Local interactions are changes due to interactions of substates in the
neighbourhood.

Internal transformations are a borderline case of local interaction, defined as
the changes in the values of the substates due to cell internal conditions
(substates inside the cell),




Lelluldr AUtomata

A PRACTICAL APPROACH FOR MODELLING SURFACE FLOWS

First consideration: Two dimensions may be sufficient, because the third
dimension may be regarded as a substate and inserted in the state of the cell
(e.g. the altitude for phenomena concerning the earth surface).
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A PRACTICAL APPROACH FOR MODELLING SURFACE FLOWS

Second consideration: The flows may be expressed as a substate, they must
be managed in terms of local interactions and must minimize locally
unbalance conditions. An algorithm for the differences minimisation have to
be expressed in the context of discrete space and time and bounded by the
cell neighbouring.

Third consideration: A relaxation rate, depending on both the cell size and
the duration of the CA step, must be considered because the minimum
“imbalance” conditions cannot be always achieved in a CA4 step. This
mechanism involves particular care in the space and time settlement: the size
of the cell limits at the top the C4 step, because the outflow rate may not be so
rapid that the outflow overcomes the neighbourhood boundaries in a step.
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OUTFLOWS DETERMINATION BY THE MINIMISATION ALGORITHM

Local conditions for minimum unbalance conditions are determinant for the evolution

of the system

Problem:

Definitions

Bounds

Outflows from the central cell to the other n neighbouring cells
must be determined in order to minimise the differences of a
quantity ¢ in the neighbouring cells:

q, = quantity, that may be distributed, in the central cell
q, = irremovable quantity in the central cell
g; = quantity in the celli I<i<n

f; = outflows from the central cell 0<i<n (f, is the part of q,

remaining in the central cell)
=q;tf; 0<i<n
q ’min 1s the minimum value for ¢;” 0<i<n

=2 f; 0<i<n
2i(q;- ¢’min)  must be minimised by the values of f;
(0<i<n)
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OUTFLOWS DETERMINATION BY THE MINIMISATION ALGORITHM

(continued)
Minimisation (a) All the neighbouring cells are “not eliminated”: A is the
Algorithm set of not eliminated cells
(b) The “average ¢” (av_gq) 1s found for the set A of not
eliminated cells:

av_q=(q,+2.q)/%A ieA
(¢) The cell x with g _> av_q is eliminated
(d) Go to step (c) until no cell is eliminated.

(e)fi=av_q- q;, ieA f[;i=0 igA
Relaxation The relaxation rate accounts for the determination
rater of the part of flow that is effectively transferred in

the neighbour cell from the central cell in a CA step.



Cellular Automata

1
EXAMPLE OF DISTRIBUTION (von Neumann neighbouring):
3 0 2
4
q,=9, q,= 81, ¢q,= 100, ¢,= 76, ¢q;=83, q,= 71,
100 & & 100
83 81:9 76 83 81:9 76 & *9 76 83 81 76:2
71 71 71 71:7
av_h=420/5=84 av_h=320/4=80 av_h=156/2=78 =2 f77
cell 1 1s eliminated cells 0 and 3 are no cell 1s
S 770

eliminated eliminated



=y ICA and CA-like models for lava flow simulation

=-Barca, Crisci, Di Gregorio, Nicoletta (1986-89).
First approach to the Cellular Automata Model. Three and two dimensional
models with discrete time and space, allowing multiple flows;

=-Ishihara et al. (1988, 1989).

Starting from Navier-Stokes equations, adopting a space tessellation and
discrete time. However, not applicable to multi-flows and/or extruded
intermittently flows;

- E-Young and Wadge (1990).

Cellular Automata approach with simulation of simple advancing lava flow
fronts (FLOWFRONT),

=- Crisci, Di Gregorio, Rongo, Spataro (1990-2002)
Cellular Automata Model with the minimisation algorithm (SCIARA).
=-Miyamoto H. and Sasaki S. (1997)

Simulating lava flows by an improved cellular automata method. They
solved the problem of spurious symmetries with a probabilistic method
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SCIARA: Simulation by Cellular Interactive Automata of the
Rheology of Aetnean lava flows (release hex1)

SCIARA =<R, X, L, Q, P, c, y>

*R={X,y)Xx,y e NV,0<x<Ix,0<y<ly} is the set of points with integer
co-ordinates in the finite region, where the phenomenon evolves. /N is the set
of natural numbers.

* LR specifies the lava source cells

« X = {(0,0). (0,1), (0.1, (1,0), (-1,0), (-1,1), (1,-1)} 0 °

is the set, which identifies the geometrical pattern of ’

the cells, which influence the cell state change. °
The finite set Q of states of the ea: Q=Q,xQ,; xQ;xQ0x QS

Q, altitude of the cell

Qu lava thickness in the cell

Q; lava temperature in the cell

Q,(Q) | lava outflow (inflow)
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SCIARA (release hex1)

* P is the set of global parameters of SCIARA

P= {Pc, pt’ padh_w padh_s’ pTv’ st’ pr’ pc}

P, side of the cell Sm
P temporal correspondence of a step of SCIARA 60 s
Padh v lava adhesion at the vents 0.7m
Padh s lava adhesion at the solidification 10 m
Prv lava temperature at the vents 1373 K
Prs lava temperature at solidification 1123 K
P, relaxation rate 1
p. cooling parameter 1.4 10 (m/K)?
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* 5: Q’—>Q is the deterministic transition function of the CA

elementary process in order input variations/determinations updating
solidification Q% Q,xQ, AQ,, Q) Q.> Quy
lava outflows (Q, x Q)" x Qq Q.0 Q,°.Q°
lava mixing (Q; x Q)° xQq, x Q7 | Qy» Qr Q> Qr
lava cooling Q% Q; Qy Qr

o :LxN— Q,, specifies the emitted lava from the source cell at the step

s, (seN)
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SCIARA (release hex1) transition function o

Internal transformation SOLIDIFICATION o Q, xQ,x Qp—> Q, x Qg

The cell altitude remains unchanged until solidification condition holds: (Q < pry).
then the altitude 1s increased by the lava thickness and lava thickness is zeroed.
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Local interaction: LAVA OUTFLOWS o,,: (Q,x Q)% Q; > Q_°

BL.ava’s rheological resistance is strongly dependent on temperature and

the resistance increases as the temperature decreases. Due to difficulties in
specifying lava rheology and and its variation with temperature, we use an
adherence parameter v that represents the amount of lava that remains in

each cell at each step.
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| SCIARA Transition Function

Local interaction: LAVA OUTFLOWS o,,: (Q,; % Q,)"x Q; —> Q,°

(' Minimisation algorithm application

q,= quantity, that may be distributed, in the central cell = Q,,, - adhesion
—| q, = irremovable quantity in the central cell = Q, + adhesion

i ¢; = quantity in the cell1 1<i<6=Q,+ Q,,
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Local interaction: LAVA MIXING o, Q;x Q¢ x Q%% Q,” = Q,

Lava mixing involves the determination for the central cell:

a) the remaining lava thickness (rem_th):rem_th = Q,[0]-2; Q,[j] 1<j<6
b) new lava thickness (new_th): new_th =rem_th+2; Q[j] 1<j<6
¢) the temperature variation by mixing is calculated as the average weight of Q,

by considering both the remaining lava and the inflows:

new_T = (rem_th* Qy [0])+2,(Q;[jI*Q<[jD)/(rem_th+X; Q;[j])
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Internal transformation LAVA COOLING et QX Qr = Qg

Temperature drop due to irradiation at the surface is computed, assuming that other
losses are not relevant:

new_T=QT/%/1+(Q% Pe! O)

from

T=T,, /3 1+ (3T e0dAt ) /( peV ) =T, /3 1+ (T2 pA/ V)
where p is the lava density, ¢ the specific heat, V' the volume, o the Stephan-
Boltzmann constant, 7" the absolute temperature of the surface, 4 the surface
area of the cell, ¢ is the surface emissivity, At (At = t2—1), the time interval,
is the step of the CA, p=3¢cAdt/pc i1s the “cooling parameter”, with 3o&/pc

describing the lava’s physical properties. Moreover, Af¢ i1s dependent also on
the cell side dimension.
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SLUIARA REAI APPIICAtion

SCIARA (release hex1): simulation of the July 2001 Etnean eruption

The Etnean eruption started the 18th of July 2001

at an elevation of ca.2100 m, near Nicolosi (Sicily).
The lava threatened Nicolosi, however stopping after
10 days (maximum lava field length).

Simulation with SCIARA were carried to develop
future scenarios and/or possible human intervention.
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A possible future scenario
after 40 days at 12 m3/s
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Real vs simulated event in 2002 Etnean eruption
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=;Cellular Automata represent an alternative approach to differential equations in
modelling complex systems, whose evolution is strongly dependent on local interactions of
their constituent parts.

=The empirical method, here introduced, was successfully applied by the research group
“Empedocles” to other macroscopic complex phenomena, such as soil contamination and
bioremediation, forest fires, soil erosion by rain; new application fields are considered:
pyroclastic flows, marine environment evolution.

=;This empirical method permits to start with simple models, whose refinement can be
performed in an incremental way, introducing other internal transformations and local
interactions. This allows a careful monitoring of the model building phase by comparison
between real phenomena and simulations.

=, This empirical method involves, for each internal transformation or local interaction,
the introduction of problem-specific parameters, whose determination may be performed
by applying optimization methods to minimize the difference between model results and
experimental data. Genetic algorithms were effective for applications with several
parameters.
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=-1t 1s important to define the limits to the application of the model to similar
phenomena: e.g., SCIARA was validated for the Etnean lava flows in 1986/7
eruption and 1991/2 eruption. SCIARA application during the eruption in the
2001 Summer for the hazard analysis was possible, because Etnean lavas
features don’t change significantly in the time. Cases, where the features
change, involve a validation considering an interval of possible values of
parameters, corresponding to different typologies of cases.

=, This point is crucial; investigantions showed that there are different
confidence intervals for phenomena of the same type.

= A last consideration can be added: the decomposition of the complex
macroscopic phenomenon in internal transformations and local interactions
seems to have encouraged interdisciplinary cooperations and exchange of
information, at least in the case treated here.



