Winter School and Workshop on Algorithmic Game Theory Singapore, 14-18 Jan 2013

Structural Decomposition Methods:

Basic Concepts and Applications in Algorithmic Game Theory

Gianluigi Greco University of Calabria

Inherent Problem Complexity

- Problems decidable or undecidable.
- We concentrate on decidable problems here.
- A problem is as complex as the best possible algorithm which solves it.

Inherent Problem Complexity

- Problems decidable or undecidable.
- We concentrate on decidable problems here.
- A problem is as complex as the best possible algorithm which solves it.

Number of steps it takes for input of size n

Time Complexity

Time Complexity

Graph Three-colorability

Instance: A graph G.

Question: Is G 3-colorable?

Examples of instances:

Graph Three-colorability

Instance: A graph G.

Question: Is G 3-colorable?

Examples of instances:

Outline

Identification of "Easy" Classes

Applications of Tree Decompositions

Beyond Tree Decompositions

Decision/Computation Problems

Optimization Problems

Enumeration Problems

Identification of Polynomial Subclasses

- High complexity often arises in "rare" worst case instances
- Worst case instances exhibit intricate structures
- In practice, many input instances have simple structures
- Therefore, our goal is to
 - Define polynomially solvable subclasses (possibly, the largest ones)
 - Prove that membership testing is tractable for these classes
 - Develop efficient algorithms for instances in these classes

Problems with a Graph Structure

- With graph-based problems, high complexity is mostly due to cyclicity.
 - Problems restricted to acyclic graphs are often trivially solvable ($\rightarrow 3COL$).
- Moreover, many graph problems are polynomially solvable if restricted to instances of low cyclicity.

Problems with a Graph Structure

- With graph-based problems, high complexity is mostly due to cyclicity.
 - Problems restricted to *acyclic* graphs are often trivially solvable ($\rightarrow 3COL$).
- Moreover, many graph problems are polynomially solvable if restricted to instances of low cyclicity.

How can we measure the degree of cyclicity?

Tree Decompositions [Robertson & Seymour '86]

Tree Decompositions [Robertson & Seymour '86]

Graph G

Tree decomposition of width 2 of G

klo

m n o

Tree Decompositions [Robertson & Seymour '86]

Graph G Tree decomposition

Tree decomposition of width 2 of G

- Every edge realized in some bag
- Connectedness condition

Connectedness condition for h

Tree Decompositions and Treewidth

 $width(T,X_i) = max |X_i| -1$ $tw(G) = min width(T_iX_i)$

Properties of Treewidth

- tw(acyclic graph)=1
- tw(cycle) = 2
- $tw(G+v) \le tw(G)+1$
- $tw(G+e) \le tw(G)+1$
- $tw(K_n) = n-1$

Properties of Treewidth

- tw(acyclic graph)=1
- tw(cycle) = 2
- $tw(G+v) \le tw(G)+1$
- $tw(G+e) \le tw(G)+1$
- $tw(K_n) = n-1$

- tw is fixed-parameter tractable (parameter: treewidth)
- 🔃 tw is a key for tractability 🛑

Classical Computational Complexity

But...

- In many problems there exists some part of the input that are quite small in practical applications
- Natural parameters
- Many NP-hard problems become easy if we fix such parameters (or we assume they are below some fixed threshold)
- Positive examples: k-vertex cover, k-feedback vertex set, k-clique, ...
- Negative examples: k-coloring, k-CNF, ...

Parameterized Complexity

Initiated by Downey and Fellows, late '80s

Typical assumption: FPT ≠ W[1]

W[1]-hard problems: k-clique

k-clique is hard w.r.t. fixed parameter complexity!

INPUT: A graph G=(V,E)

PARAMETER: Natural number *k*

Does G have a clique over k vertices?

FPT races

http://fpt.wikidot.com/

Problem	f(k)
Vertex Cover	1.2738^{k}
Connected Vertex Cover	2 k
Multiway Cut	2^k
Directed Multiway Cut	$2^{O(k^3)}$
Almost-2-SAT (VC-PM)	4^k
Multicut	$2^{O(k^3)}$
Pathwidth One Deletion Set	4.65^{k}
Undirected Feedback Vertex Set	3.83^{k}
Undirected Feedback Vertex Set	3^k
Subset Feedback Vertex Set	$2^{O(k \log k)}$
Directed Feedback Vertex Set	$4^k k!$
Odd Cycle Transversal	3^k
Edge Bipartization	2 k
Planar DS	$2^{11.98\sqrt{k}}$
1-Sided Crossing Min	$2^{O(\sqrt{k}\log k)}$
Max Leaf	3.72^{k}
Directed Max Leaf	3.72^{k}
Set Splitting	1.8213^{k}
Nonblocker	2.5154^{k}
Edge Dominating Set	2.3147^{k}
k-Path	4 k
k-Path	1.66^{k}
Convex Recolouring	4^k
VC-max degree 3	1.1616^{k}
Clique Cover	22k
Clique Partition	2^{k^2}
Cluster Editing	1.62^{k}
Steiner Tree	2^k
3-Hitting Set	2.076^{k}

Properties of Treewidth

- tw(acyclic graph)=1
- tw(cycle) = 2
- $tw(G+v) \le tw(G)+1$
- $tw(G+e) \le tw(G)+1$
- $tw(K_n) = n-1$

- tw is fixed-parameter tractable (parameter: treewidth)
- ntractability twis a key for tractability

An important Metatheorem

Courcelle's Theorem [1987]

Let P be a problem on graphs that can be formulated in **Monadic Second Order Logic** (MSO).

Then P can be solved in liner time on graphs of bounded treewidth

An important Metatheorem

Courcelle's Theorem [1987]

Let P be a problem on graphs that can be formulated in **Monadic Second Order Logic** (MSO).

Then P can be solved in liner time on graphs of bounded treewidth

Theorem. (Fagin): Every NP-property over graphs can be represented by an existential formula of Second Order Logic. NP=ESO

Monadic SO (MSO): Subclass of SO, only set variables, but no relation variables of higher arity.

3-colorability \in MSO.

Three Colorability in MSO

```
(\exists R, G, B) \quad [ \qquad (\forall x (R(x) \lor G(x) \lor B(x))) \\ \land \quad (\forall x (R(x) \Rightarrow (\neg G(x) \land \neg B(x)))) \\ \land \quad \dots \\ \land \quad \dots \\ \land \quad (\forall x, y (E(x, y) \Rightarrow (R(x) \Rightarrow (G(y) \lor B(y))))) \\ \land \quad (\forall x, y (E(x, y) \Rightarrow (G(x) \Rightarrow (R(y) \lor B(y))))) \\ \land \quad (\forall x, y (E(x, y) \Rightarrow (B(x) \Rightarrow (R(y) \lor G(y))))) ]
```

Master Theorems for Treewidth

Arnborg, Lagergren, Seese '91:

Optimization version of Courcelle's Theorem.

Finding an optimal set P such that $G \models \Phi(P)$ is FP-linear over inputs G of bounded treewidth.

Example:

Given a graph G=(V,E)

Find a *smallest* P such that

 $\forall x \forall y : (E(x,y) \rightarrow (P(x) \neq P(y))$

Optimality (More General)

- $G = \langle (N, E), w_N, w_E \rangle$ is a graph weighted on vertices and edges, and ϕ an **MSO**₂ formula
- A solution to φ is an interpretation (z_N, z_E) (a pair (set of vertices, set of edges)) such that (N, E) |= φ[(z_n, z_E)] and its cost is ∑_{X∈z_N} w_N(x) + ∑_{V∈z_E} w_E(y).
- A solution of minimum cost is said optimal

Theorem (simplified from Arnborg et al., 1991)

Let ϕ be a fixed **MSO**₂ sentence and let $G = \langle (N, E), f_N, f_E \rangle$ be a weighted graph such that $(N, E) \in \mathcal{C}_k$. Then, computing an optimal solution to ϕ over G is feasible in polynomial time (w.r.t. ||G||).

Outline

Identification of "Easy" Classes

Applications of Tree Decompositions

Beyond Tree Decompositions

Decision/Computation Problems

Optimization Problems

Enumeration Problems

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$\mathcal{G} = \langle N, v \rangle, v : 2^N \mapsto \mathbb{R}$$

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$\mathcal{G} = \langle N, v \rangle, \ v : 2^N \mapsto \mathbb{R}$$

ullet Outcomes belong to the imputation set $X(\mathcal{G})$

$$x \in X(\mathcal{G}) \begin{cases} \bullet & \textit{Efficiency} \\ x(N) = v(N) \\ \bullet & \textit{Individual Rationality} \\ x_i \geq v(\{i\}), \quad \forall i \in N \end{cases}$$

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$\mathcal{G} = \langle N, v \rangle, \ v : 2^N \mapsto \mathbb{R}$$

- Solution Concepts characterize outcomes in terms of
 - Fairness
 - Stability

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$\mathcal{G} = \langle N, v \rangle, \ v : 2^N \mapsto \mathbb{R}$$

- Solution Concepts characterize outcomes in terms of
 - Fairness
 - Stability

The Core:
$$\forall S \subseteq N, x(S) \geq v(S);$$

 $x(N) = v(N)$

Compact Games

Compact Games

Compact Games

Compact Games

- Graph Games [Deng and Papadimitriou, 1994]
 - Computational issues of several solution concepts

The Core:
$$\forall S \subseteq N, x(S) \geq v(S);$$

 $x(N) = v(N)$

Consider the sentence, over the graph where *N* is the set of nodes and *E* the set of edges:

$$proj(X,Y) \equiv X \subseteq N \land \\ \forall c,c' \big(Y(c,c') \to X(c) \land x(c') \big) \land \\ \forall c,c' \big(X(c) \land X(c') \land E(c,c') \to Y(c,c') \big)$$

The Core:
$$\forall S \subseteq N, x(S) \geq v(S);$$

 $x(N) = v(N)$

Consider the sentence, over the graph where *N* is the set of nodes and *E* the set of edges:

$$proj(X,Y) \equiv X \subseteq N \land \\ \forall c,c' \big(Y(c,c') \to X(c) \land x(c') \big) \land \\ \forall c,c' \big(X(c) \land X(c') \land E(c,c') \to Y(c,c') \big)$$

...it tells that Y is the set of edges covered by the nodes in X

The Core:
$$\forall S \subseteq N, x(S) \geq v(S);$$

 $x(N) = v(N)$

Let proj(X,Y) be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights:
$$w_E(c,c') = -w(c,c'); \quad w_N(c) = x_c$$

Value of the edge (negated) Value at the imputation

The Core:
$$\forall S \subseteq N, x(S) \geq v(S);$$

 $x(N) = v(N)$

Let proj(X,Y) be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights:
$$w_E(c,c') = -w(c,c'); \quad w_N(c) = x_c$$

Value of the edge (negated) Value at the imputation

Find the "minimum-weight" X and Y such that proj(X,Y) holds

The Core:
$$\forall S \subseteq N, x(S) \ge v(S);$$

$$x(N) = v(N)$$

$$0 \ge e(S, x) = v(S) - \sum_{i \in S} x_i$$

Let proj(X,Y) be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights:
$$w_E(c,c') = -w(c,c'); \quad w_N(c) = x_c$$

Value of the edge (negated) Value at the imputation

Find the "minimum-weight" X and Y such that proj(X,Y) holds

Max (value of edges – value of the imputation), i.e., $max_{S\subseteq N}e(S,x)$

Outline

Identification of "Easy" Classes

Applications of Tree Decompositions

Beyond Tree Decompositions

Decision/Computation Problems

Optimization Problems

Enumeration Problems

Beyond Treewidth

- Treewidth is currently the most successful measure of graph cyclicity. It subsumes most other methods.
- However, there are "simple" graphs that are heavily cyclic. For example, a clique.

Beyond Treewidth

- Treewidth is currently the most successful measure of graph cyclicity. It subsumes most other methods.
- However, there are "simple" graphs that are heavily cyclic. For example, a clique.

There are also problems whose structure is better described by **hypergraphs** rather than by graphs...

Generalized Hypertree Decompositions

Basic Conditions_(1/2)

Basic Conditions_(2/2)

Connectedness Condition

Computational Question

Can we determine in polynomial time whether ghw(H) < k for constant k?</p>

Computational Question

Can we determine in polynomial time whether ghw(H) < k for constant k?</p>

Bad news: ghw(H) < 4? NP-complete

[Schwentick et. al. 06]

Hypertree Decomposition (HTD)

HTD = Generalized HTD +Special Condition

Special Condition

Special Condition

Thus, e.g., all available variables in the root must be used

Positive Results on Hypertree Decompositions

- For fixed k, deciding whether $hw(Q) \le k$ is in polynomial time (LOGCFL)
- Computing hypertree decompositions is feasible in polynomial time (for fixed k).

But: FP-intractable wrt k: W[2]-hard.

Relationship GHW vs HW

Observation:

$$ghw(H) = hw(H^*)$$

where
$$H^* = H \cup \{E' \mid \exists E \text{ in edges}(H): E' \subseteq E\}$$

Exponential!

Approximation Theorem [Adler, Gottlob, Grohe ,05]:

$$ghw(H) \le 3hw(H)+1$$

Outline

Identification of "Easy" Classes

Applications of Tree Decompositions

Beyond Tree Decompositions

Decision/Computation Problems

Optimization Problems

Enumeration Problems

Three Problems

HOM: The homomorphism problem BCQ: Boolean conjunctive query evaluation

CSP: Constraint satisfaction problem

Important problems in different areas. All these problems are hypergraph based.

The Homomorphism Problem

Given two relational structures

$$A = (U, R_1, R_2, ..., R_k)$$

 $B = (V, S_1, S_2, ..., S_k)$

lacktriangle Decide whether there exists a *homomorphism* $m{h}$ from $oldsymbol{\mathbb{A}}$ to $oldsymbol{\mathbb{B}}$

$$h: U \longrightarrow V$$

such that $\forall \mathbf{x}, \forall i$
 $\mathbf{x} \in R_i \implies h(\mathbf{x}) \in S_i$

HOM is NP-complete

(well-known, independently proved in various contexts)

Membership: Obvious, guess h.

Hardness: Transformation from 3COL.

A 11		
2		
3		
3		
4		
5		
5		
6		

red green
red blue
green red
green blue
blue red
blue green

Graph 3-colourable iff HOM(A,B) yes-instance.

HOM is NP-complete

(well-known, independently proved in various contexts)

Membership: Obvious, guess h.

Hardness: Transformation from 3COL.

Graph 3-colourable *iff* HOM(A,B) yes-instance.

Conjunctive Database Queries

DATABASE:

	Enrolled	
John	Algebra	2003
Robert	Logic	2003
Mary	DB	2002
Lisa	DB	2003

1		Teaches	
	McLane	Algebra	March
	Verdi	Logic	May
	Lausen	DB	June
	Rahm	DB	May
•			

	Par	rent
V	IcLane erdi ahm	Lisa Robert Mary

QUERY:

Is there any teacher having a child enrolled in her course?

ans \leftarrow Enrolled(S,C,R) \land Teaches(P,C,A) \land Parent(P,S)

Conjunctive Database Queries

DATABASE:

CSPs and Hypergraphs

1	2	3	4	5		6
7				8	9	10
11	12	13		14		15
16		17		18		19
20	21	22	23	24	25	26

ℓ-structure A

- Variables map to nodes
- Scopes map to hyperedges

- We have seen that Acyclicity is efficiently recognizable
- We shall see that Acyclic CSPs can be efficiently solved

Decomposition Methods

Decomposition Methods

Transform the hypergraph into an acyclic one:

- Organize its edges (or nodes) in clusters
- Arrange the clusters as a tree,
 by satisfying the connectedness condition

Generalized Hypertree Decompositions

Transform the hypergraph into an acyclic one:

- Organize its edges (or nodes) in clusters
- Arrange the clusters as a tree,
 by satisfying the connectedness condition

Generalized Hypertree Decompositions

Transform the hypergraph into an acyclic one:

- Organize its edges (or nodes) in clusters
- Arrange the clusters as a tree,
 by satisfying the connectedness condition

Generalized Hypertree Decompositions

Basic Question

INPUT: CSP instance (\mathbb{A}, \mathbb{B})

• Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

Basic Question (on Acyclic Instances)

INPUT: CSP instance (\mathbb{A}, \mathbb{B})

• Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

- Feasible in polynomial time $O(n^2 \times \log n)$
- LOGCFL-complete

Basic Question (on Acyclic Instances)

INPUT: CSP instance (\mathbb{A}, \mathbb{B})

• Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

- Feasible in polynomial time $O(n^2 \times \log n)$
- LOGCFL-complete

A Polynomial-time Algorithm

HOM: The homomorphism problem

BCQ: Boolean conjunctive query evaluation

CSP: Constraint satisfaction problem

Yannakakis's Algorithm (ABCQs):

Dynamic Programming over a Join Tree

«Answering» Acyclic Instances

HOM: The homomorphism problem

BCQ: Boolean conjunctive query evaluation

CSP: Constraint satisfaction problem

Yannakakis's Algorithm (ABCQs):

Dynamic Programming over a Join Tree

Answering ACQs can be done adding a top-down phase to Yannakakis' algorithm for ABCQs

Example Application: Strategic Games

- Game G=(P,Neigh,Act,U) where
 - P: set of players
 - Neigh(p): neighbors of player p
 - Act(p): actions (strategies) of player p
 - U: utility function u(p), for each player p

Example Application: Strategic Games

- Game G=(P,Neigh,Act,U) where
 - P: set of players
 - Neigh(p): neighbors of player p
 - Act(p): actions (strategies) of player p
 - U: utility function u(p), for each player p

Ex.: Prisoners' Dilemma

- $P = \{P_1, P_2\}$
- Neigh(P₁)= {P₂}; Neigh(P₂)= {P₁};
- Act(P₁) = Act(P₂)= {collaborate, defeat}
- Utility functions: listed in the matrix

Nash equilibrium: a global strategy, from which no player has an incentive to unilaterally deviate.

Nash equilibrium: a global strategy, from which no player has an incentive to unilaterally deviate.

Nash equilibrium: a global strategy, from which no player has an incentive to unilaterally deviate.

Nash equilibrium: a global strategy, from which no player has an incentive to unilaterally deviate.

<u>Theorem</u>: Every game admits a *mixed* Nash equilibrium, where players chose their strategies according to probability distributions

Nash equilibrium: a global strategy, from which no player has an incentive to unilaterally deviate.

<u>Theorem</u>: Every game admits a *mixed* Nash equilibrium, where players chose their strategies according to probability distributions

Pure Equilibria

- Players:
 - Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:
 - movie, opera

F	$P_m R_m$	$P_m R_o$	P_oR_m	P_oR_o
m	2	2	1	0
0	0	2	1	2

G	P_mF_m	$P_m F_o$	P_oF_m	P_oF_o
m	2	0	0	1
0	2	0	0	1

R	F_m	F_o
m	0	1
0	2	0

P	F_m	F_o
m	2	0
0	0	1

M	R_m	R_o
m	1	0
0	0	2

Pure Equilibria

- Players:
 - Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:
 - movie, opera

F	$P_m R_m$	$P_m R_o$	P_oR_m	P_oR_o
m	2	2	1	0
0	0	2	1	2

G	P_mF_m	$P_m F_o$	P_oF_m	P_oF_o
m	2	0	0	1
0	2	0	0	1

R	F_m	F_o
m	0	1
0	2	0

Ш

P	F_m	F_o
m	2	0
0	0	1

M	R_m	R_o
m	1	0
o	0	2

Pure Equilibria

- Players:
 - Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:
 - movie, opera

NP-hard!	N	P-hard	
-----------------	---	--------	--

F	$P_m R_m$	$P_m R_o$	P_oR_m	P_oR_o
m	2	2	1	0
0	0	2	1	2

G	P_mF_m	$P_m F_o$	P_oF_m	P_oF_o
m	2	0	0	1
0	2	0	0	1

R	F_m	F_o
m	0	1
0	2	0

P	F_m	F_o
m	2	0
0	0	1

M	R_m	R_o
m	1	0
o	0	2

Pure Nash Equilibria and Easy Games

Nash Equilibrium Existence

Constraint Satisfaction Problem

Solve CSP in polynomial time using known methods

Encoding Games in CSPs

F	P_mR_m	$P_m R_o$	P_oR_m	P_oR_o
m	2	2	1	0
0	0	2	1	2

G	P_mF_m	$P_m F_o$	P_oF_m	P_oF_o
m	2	0	0	1
0	2	0	0	1

R	F_m	F_o
m	0	1
0	2	0

P	F_m	F_o
m	2	0
0	0	1

M	R_m	R_o
m	1	0
О	0	2

F.	l P	R
m	m	m
m	m	0
0	m	0
m	0	m
0	0	m
0	0	0

 τ_F :

TG:

G	P	F	
m	m	m	
0	m	m	
m	m	0	
0	m	0	
m	0	m	
0	0	m	
m	0	0	124
0	0	0	

 r_R :

R	F
0	m
m	0

 r_M :

 r_P :

P	F
m	m
0	0

M	R
m	m
0	0

Encoding Games in CSPs

F	P_mR_m	$P_m R_o$	P_oR_m	P_oR_o
m	2	2	1	0
0	0	2	1	2

G	P_mF_m	$P_m F_o$	P_oF_m	P_oF_o
m	2	0	0	1
0	2	0	0	1

R	F_m	F_o
m	0	1
o	2	0

P	F_m	F_o
m	2	0
0	0	1

M	R_m	R_o
m	1	0
О	0	2

F	Р	R
m	m	m
m	m	o
0	m	0
m	0	m
0	0	m
0	0	0

 τ_F :

TG:

G	P	F	
m	m	m	
0	m	m	
m	m	0	
0	m	0	
m	0	m	
0	0	m	
m	0	0	125
0	0	0	

 r_R :

R	F
0	m
m	0

 τ_P :

P	F
lm	m
0	0

 $r_M: egin{bmatrix} M & R \ \hline m & m \ \hline o & o \end{bmatrix}$

Encoding Games in CSPs

F	$P_m R_m$	$P_m R_o$	P_oR_m	P_oR_o
m	2	2	1	0
0	0	2	1	2

G	P_mF_m	$P_m F_o$	P_oF_m	P_oF_o
m	2	0	0	1
0	2	0	0	1

R	F_m	F_o
m	0	1
0	2	0

P	F_m	F_o
m	2	0
0	0	1

M	R_m	R_o
m	1	0
0	0	2

r_G	

G	Ъ	F.	
m	m	m	
0	***	1111	
m	m	o	
0	m	0	
m	0	m	
0	0	m	
m	0	0	126
0	0	0	

 r_R :

R	F	
0	h	D
m	0	

TP

P	F
m	m
0	0

7	A	ſ	
		_	

M	R
ш	m
0	0

Interaction Among Players: Friends

- The interaction structure of a game G can be represented by:
 - the dependency graph G(G) according to Neigh(G)
 - a hypergraph H(G) with edges: H(p)=Neigh(p) ∪ {p}

Interaction Among Players: Friends

This is the same structure as the one of the associated CSP

H(FRIENDS)

Interaction Among Players: Friends

This is the same structure as the one of the associated CSP

On (nearly)-Acyclic Instances, Nash equilibria are easy

H(FRIENDS)

Outline

Identification of "Easy" Classes

Applications of Tree Decompositions

Beyond Tree Decompositions

Decision/Computation Problems

Optimization Problems

Enumeration Problems

Constraint Optimization Problems

- Classically, CSP: Constraint Satisfaction Problem
- However, sometimes a solution is enough to "satisfy" (constraints), but not enough to make (users) "happy"

Any solution

Any best (or at least good) solution

- Hence, several variants of the basic CSP framework:
 - E.g., fuzzy, probabilistic, weighted, lexicographic, penalty, valued, semiring-based, ...

Classical CSPs

- Set of variables $\{X_1, ..., X_{26}\}$
- Set of constraint scopes

Set of constraint relations

Puzzles for Experts...

The puzzle in general admits more than one solution...

E.g., find the solution that minimizes the total number of vowels occurring in the words

A Classification for Optimization Problems

Each mapping variable-value has a cost.

- Then, find an assignment:
 - Satisfying all the constraints, and
 - Having the minimum total cost.

A Classification for Optimization Problems

Each mapping variable-value has a cost.

Then, find an assignment:

- Satisfying all the constraints, and
- Having the minimum total cost.

Each tuple has a cost.

Then, find an assignment:

- Satisfying all the constraints, and
- Having the minimum total cost.

A Classification for Optimization Problems

Each mapping variable-value has a cost.

Then, find an assignment:

- Satisfying all the constraints, and
- Having the minimum total cost.

Each tuple has a cost.

Then, find an assignment:

- Satisfying all the constraints, and
- Having the minimum total cost.

Each constraint relation has a cost.

Then, find an assignment:

Minimizing the cost of violated relations.

12345 PARIS PANDA LAURA

- The mapping:
- Is feasible in linear time
- Preserves the solutions
- Preserves acyclicity

In-Tractability of MAX-CSP Instances

 Maximize the number of words placed in the puzzle

In-Tractability of MAX-CSP Instances

Add a "big" constraint with no tuple

 Maximize the number of words placed in the puzzle

The puzzle is satisfiable ↔ exactly one constraint is violated in the acyclic MAX-CSP

Tractability of MAX-CSP Instances

- 1. Consider the incidence graph
- 2. Compute a Tree Decomposition

Tractability of MAX-CSP Instances

Tractability of MAX-CSP Instances

In-Tractability of MAX-CSP Instances

- Is feasible in time exponential in the width
- The mapping:
- Preserves the solutions
- Leads to an Acyclic CSOP Instance

Winner Determination Problem

 Determine the outcome that maximizes the sum of accepted bid prices

 Determine the outcome that maximizes the sum of accepted bid prices

Example Application: Combinatorial Auctions

- Other applications [Cramton, Shoham, and Steinberg, '06]
 - airport runway access
 - trucking
 - bus routes
 - industrial procurement

Example Application: Combinatorial Auctions

Winner Determination is NP-hard

Structural Properties

item hypergraph

Structural Properties

The Winner Determination Problem remains NP-hard even in case of acyclic hypergraphs

Dual Hypergraph

item hypergraph

Dual Hypergraph

Dual Hypergraph

The Approach

Outline

Identification of "Easy" Classes

Applications of Tree Decompositions

Beyond Tree Decompositions

Decision/Computation Problems

Optimization Problems

Enumeration Problems

Puzzles for «Very» Experts...

The puzzle in general admits more than one solution...

Generate all solutions

Puzzles for «Very» Experts...

The puzzle in general admits more than one solution...

Generate all solutions

Projection

Problem over Variables X₁,...,X_n

Projection

Problem over Variables X₁,...,X_n

Projection

Problem over Variables X₁,...,X_n

Questions

INPUT: CSP instance (\mathbb{A}, \mathbb{B})

- ullet Enumerate all the homomorphisms in $\mathbb{A}^{\mathbb{B}}$
- ullet For a set of variables X, enumerate the *projection* $\mathbb{A}^{\mathbb{B}}[X]$

Questions

INPUT: CSP instance (\mathbb{A}, \mathbb{B})

- ullet Enumerate all the homomorphisms in $\mathbb{A}^{\mathbb{B}}$
- ullet For a set of variables X, enumerate the *projection* $\mathbb{A}^{\mathbb{B}}[X]$

What about efficiency here >

- All the following tasks are in POLYNOMIAL TIME
 - Decide whetere there is no solution
 - Find the first solution
 - Given the current solution, find the next one
 - After the last solution, check that there are no further ones

- All the following tasks are in POLYNOMIAL TIME
 - Decide whetere there is no solution
 - Find the first solution
 - Given the current solution, find the next one
 - After the last solution, check that there are no further ones

What about the SPACE

- All the following tasks are in POLYNOMIAL TIME
 - Decide whetere there is no solution
 - Find the first solution
 - Given the current solution, find the next one
 - After the last solution, check that there are no further ones

exponential space, but operations in polynomial time

- All the following tasks are in POLYNOMIAL TIME
 - Decide whetere there is no solution
 - Find the first solution
 - Given the current solution, find the next one
 - After the last solution, check that there are no further ones

- All the following tasks are in POLYNOMIAL TIME
 - Decide whetere there is no solution
 - Find the first solution
 - Given the current solution, find the next one
 - After the last solution, check that there are no further ones

- Bottom-Up + Top-Down propagation
- Fix X₁ to the next value and propagate
 - Fix X₂ to the next value and propagate

. . .

Fix X_n to the next value and propagate

- Bottom-Up + Top-Down propagation
- Fix X₁ to the next value and propagate
 - Fix X₂ to the next value and propagate

. . .

Fix X_n to the next value and propagate

Output the given solution

Bottom-Up + Top-Down propagation

Fix X₁ to the next value and *propagate*

Fix X₂ to the next value and propagate

,..

Fix X_n to the next value and propagate

- Bottom-Up + Top-Down propagation
- Fix X_1 to the next value and *propagate* Fix X_2 to the next value and *propagate*...

 Fix X_n to the next value and *propagate*

After the propagation phase,
every remaining tuple participates in at least one solution

- Bottom-Up + Top-Down propagation
- Fix X₁ to the next value and propagate
 - Fix X₂ to the next value and propagate
 - **,...**
 - Fix X_n to the next value and propagate

Backtracking with no wrong choices

Enumeration WPD

Outline

Identification of "Easy" Classes

Applications of Tree Decompositions

Beyond Tree Decompositions

Decision/Computation Problems

Optimization Problems

Enumeration Problems

Appendix: The Fronteer of Tractability

The Core

The core of a query Q is a query Q's.t.:

- 1. $atoms(Q') \subseteq atoms(Q)$
- 2. There is a mapping $h: var(Q) \rightarrow var(Q')$ s.t., $\forall r(X) \in atoms(Q), r(h(X)) \in atoms(Q')$
- 3. There is no query Q" satisfying 1 and 2 and such that atoms(Q") ⊂ atoms(Q')

The Core

The core of a query Q is a query Q's.t.:

- 1. $atoms(Q') \subseteq atoms(Q)$
- 2. There is a mapping $h: var(Q) \rightarrow var(Q')$ s.t., $\forall r(X) \in atoms(Q), r(h(X)) \in atoms(Q')$

The Core

Cores are isomorphic |

The "Core"

Cores are equivalent to the query

Example:

 Q'

Graph Minors

- H is a minor of G if it can be obtained by repeatedly applying:
 - Edge deletion
 - Vertex deletion
 - Edge contraction

Let A be a class of structures:

- Let A be a class of structures:
 - Assume FPT≠ WP[1]

- Let A be a class of structures:
 - Assume FPT≠ WP[1]

- Let A be a class of structures:
 - Assume FPT≠ WP[1]

- Let A be a class of structures:
 - Assume FPT≠ WP[1]

- Let A be a class of structures:
 - Assume FPT≠ WP[1]

- Let A be a class of structures:
 - ◆ Assume FPT≠ WP[1]
- Assume A is closed under taking minors

NP-hard

P₁: The core of each instance in A has bounded treewidth

[Grohe, '07]

P₂: Each instance in A has bounded treewidth

[Greco & Scarcello, '12]

 P₂: Each instance in A has bounded treewidth

[Greco & Scarcello, '11]

Appendix: Methods without Decompositions

Overview

Overview

Relations:

Work on subproblems

 Generalized hypertree width: take all views that can be computed by joining at most k atoms (k query views)

 Generalized hypertree width: take all views that can be computed by joining at most k atoms (k query views)

Requirements on Subproblem Definition

- 1. Every subproblem is not more restrictive than the full problem
- 2. Every base subproblem is at least restrictive as the corresponding constraint
- 1. Every constraint is associated with a base subproblem
- 2. Further subproblems can be defined

Acyclicity in Decomposition Methods

Working on subproblems is not necessarily beneficial...

Acyclicity in Decomposition Methods

$$\mathbb{A}_{\mathcal{V}} = \ell\text{-DM}(\mathbb{A}) | \mathbb{B}_{\mathcal{V}} = r\text{-DM}(\mathbb{A}, \mathbb{B})$$

Working on subproblems is not necessarily beneficial...

Can some and/or portions of them be selected such that:

- They still cover A, and
- They can be arranged as a tree

Structure of the CSP

Structure of the CSP

Structure of the CSP

Tree Projection

Structure of the CSP

Tree Projection

(Noticeable) Examples

- Treewidth: take all views that can be computed with at most k variables
- Generalized hypertree width: take all views that can be computed by joining at most k atoms (k query views)
- Fractional hypertree width: take all views that can be computed through subproblems having fractional cover at most k (or use Marx's O(k³) approximation to have polynomially many views)

Tree Decomposition

A General Framework, but

Decide the existence of a tree projection is NP-hard

[Gottlob, Miklos, and Schwentick, JACM'09]

A General Framework, but

Decide the existence of a tree projection is NP-hard

Hold on generalized hypertree width too.

[Gottlob, Miklos, and Schwentick, JACM'09]

Overview

 $Q: r(A,B) \wedge r(B,C) \wedge r(A,C) \wedge r(D,C) \wedge r(D,B) \wedge r(A,E) \wedge r(F,E),$

 $Q: r(A,B) \wedge r(B,C) \wedge r(A,C) \wedge r(D,C) \wedge r(D,B) \wedge r(A,E) \wedge r(F,E),$

Tree Projection

Available Views

Structure of the CSP

Tree Projection

CORE is NP-hard

- Deciding whether Q' is the core of Q is NP-hard
- For instance, let 3COL be the class of all 3colourable graphs containing a triangle
- Clearly, deciding whether G∈3COL is NP-hard
- It is easy to see that $G \in 3COL \Leftrightarrow K_3$ is the core of G

Overview

Overview

Enforcing Local Consistency (Acyclic)

Enforcing Local Consistency (Decomposition)

Enforcing Local Consistency (Decomposition)

If there is a tree projection, then enforcing local consistency over the views solves the decision problem

Enforcing Local Consistency (Decomposition)

Does not need to be computed

$$\mathbb{A}_{\mathcal{V}} = \ell\text{-DM}(\mathbb{A}) \quad \mathbb{B}_{\mathcal{V}} = r\text{-DM}(\mathbb{A}, \mathbb{B})$$

If there is a tree projection, then enforcing local consistency over the views solves the decision problem

Even Better

CSP instance (\mathbb{A}, \mathbb{B})

There is a polynomial-time algorithm that:

- either returns that there is no tree projection,
- or solves the decision problem

Even Better

$$\mathbb{A}_{\mathcal{V}} = \ell\text{-DM}(\mathbb{A}) \, \mathbb{I} \, \mathbb{B}_{\mathcal{V}} = r\text{-DM}(\mathbb{A}, \mathbb{B})$$

just check the given solution

There is a polynomial-time algorithm that:

- either returns that there is no tree projection,
- or solves the decision problem

The Precise Power of Local Consistency

- The followings are equivalent:
 - Local consistency solves the decision problem
 - There is a core of the query having a tree projection

The Precise Power of Local Consistency

- The followings are equivalent
 - Local consistency solves the decision problem
 - There is a core of the query having a tree projection

$$Q: r(A,B) \wedge r(B,C) \wedge r(A,C) \wedge r(D,C) \wedge r(D,B) \wedge r(A,E) \wedge r(F,E),$$

The Precise Power of Local Consistency

- The followings are equivalent
 - Local consistency solves the decision problem
 - There is a core of the query having a tree projection

$$Q: r(A,B) \wedge r(B,C) \wedge r(A,C) \wedge r(D,C) \wedge r(D,B) \wedge r(A,E) \wedge r(F,E),$$

a core with TP

a core without TP

A Relevant Specialization (not immediate)

- The followings are equivalent
 - Local consistency solves the decision problem
 - There is a core of the query having a tree projection

The CSP has generalized hypertreewidth k at most

Over all union of k atoms

Back on the Result

- The followings are equivalent
 - Local consistency solves the decision problem
 - There is a core of the query having a tree projection

«Promise» tractability

- There is no polynomial time algorithm that
 - either solves the decision problem
 - or disproves the promise

Overview

Overview

Recall This Approach

- Bottom-Up + Top-Down propagation
- Fix X₁ to the next value and propagate
 - Fix X₂ to the next value and propagate

,...

Fix X_n to the next value and propagate

Backtracking with no wrong choices

Enumeration WPD

Recall This Approach

- Bottom-Up + Top-Down propagation
- Fix X₁ to the next value and *propagate*Fix X₂ to the next value and *propagate*Fix X_n to the next value and *propagate*

If there is a tree projection, then the algorithm solves the enumeration problem

Recall This Approach

- Bottom-Up + Top-Down propagation
- Fix X₁ to the next value and *propagate*Fix X₂ to the next value and *propagate*...
 Fix X_n to the next value and *propagate*
 - ------

If there is a tree projection, then the algorithm solves the enumeration problem

but more can be done...

Tp-covered

 $Q: \quad r(A,B) \wedge r(B,C) \wedge r(A,C) \wedge r(D,C) \wedge \\ r(D,B) \wedge r(A,E) \wedge r(F,E),$

Tp-covered

 $Q: \quad r(A,B) \wedge r(B,C) \wedge r(A,C) \wedge r(D,C) \wedge \\ r(D,B) \wedge r(A,E) \wedge r(F,E),$

Tp-covered

 $Q: r(A,B) \wedge r(B,C) \wedge r(A,C) \wedge r(D,C) \wedge r(D,B) \wedge r(A,E) \wedge r(F,E),$

Tp-covered

(F,A) is tp-covered, if there is a tree projection covering an «output»-aware core

There is a tree projection

O is tp-covered

There is a tree projection

- The algorithm might return FAIL
 - Solutions so far computed are correct
 - There is no tree projection

O is tp-covered

«Promise» tractability

- There is no polynomial time algorithm that
 - either solves the problem
 - or disproves the promise

[Greco & Scarcello, PODS'10]

Thank you!

Appendix: LCFL Results

Basic Question (on Acyclic Instances)

INPUT: CSP instance (\mathbb{A}, \mathbb{B})

• Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

- Feasible in polynomial time $O(n^2 \times \log n)$
- LOGCFL-complete

LOGCFL

- LOGCFL: class of problems/languages that are logspace-reducible to a CFL
- Admit efficient parallel algorithms

$$AC_0 \subseteq NL \subseteq LOGCFL = SAC_1 \subseteq AC_1 \subseteq NC_2 \subseteq \cdots \subseteq NC = AC \subseteq P \subseteq NP$$

Characterization of LOGCFL [Ruzzo '80]:

LOGCFL = Class of all problems solvable with a logspace ATM with polynomial tree-size

ABCQ is in LOGCFL

ABCQ is in LOGCFL

ABCQ is in LOGCFL

CSOP Extensions: Formal Framework

Evaluation Functions

- $-\mathbb{D}$ domain of values, \succeq a total order over it
- evaluation function \mathcal{F} : a tuple $\langle w, \oplus \rangle$ with $w : Var \times \mathcal{U} \mapsto \mathbb{D}$
- $-\oplus$ commutative, associative, and closed binary operator with an identity element over $\mathbb D$
- $-\mathcal{F}(\theta) = \bigoplus_{X/u \in \theta} w(X, u)$ (with $\mathcal{F}(\emptyset)$ being the identity w.r.t. \oplus)

Monotone Functions

$$\mathcal{F}(\theta) \succeq \mathcal{F}(\theta') \implies \mathcal{F}(\theta) \oplus \mathcal{F}(\theta'') \succeq \mathcal{F}(\theta') \oplus \mathcal{F}(\theta''), \quad \forall \theta''$$

CSOP Extensions: Multi-Objective Optimization

- We often want to express more preferences, e.g.,
 - minimize cost, then minimize total time, or
 - maximize the profit, then minimize the number of different buyers, or transactions
- Formally,
 - $-L = [\mathcal{F}_1, ..., \mathcal{F}_m]$ $-L(\theta) \text{ denotes } (\mathcal{F}_1(\theta), ..., \mathcal{F}_m(\theta)) \in \mathbb{D}_1 \times \cdots \times \mathbb{D}_m$
- Compare vectors by the lexicographical precedence relationship (Cascade of preferences)

Linearization (following [Brafman et al'10])

- $\succeq_{\mathcal{U}}$ an arbitrary total order defined over \mathcal{U}
- $-\ell = [X_1, ..., X_n]$ a list including all the variables in Var
- ullet Define the total order \succeq_L^ℓ
 - ties in \succeq_L are resolved according to the lexicographical precedence relationship ℓ over variables and the total order $\succeq_{\mathcal{U}}$ over \mathcal{U}
 - $-\succeq_L^{\ell}$ is a refinement of \succeq_L

Hints (motonone lists)

- Extend the dynamic programming approach
- Because of linearization we have a total order
- The algorithm exploits an extended list of evaluation functions (still monotone) $[\mathcal{F}_1,...,\mathcal{F}_m,\mathcal{F}_\ell]$, $\mathcal{F}_\ell=\langle w_\ell,+\rangle$
- where $w_{\ell}(X_i, u) = |\mathcal{U}|^{n-i} \times r_{\mathcal{U}}(u)$

Hints (motonone lists)

- Extend the dynamic programming approach
- Because of linearization we have a total order
- The algorithm exploits an extended list of evaluation functions (still monotone) $[\mathcal{F}_1,...,\mathcal{F}_m,\mathcal{F}_\ell]$, $\mathcal{F}_\ell=\langle w_\ell,+\rangle$
- where $w_{\ell}(X_i, u) = |\mathcal{U}|^{n-i} \times r_{\mathcal{U}}(u)$

CSOP Extensions: Smooth Functions

- \mathcal{F} is smooth (w.r.t. Φ and DB) if, $\forall \theta$, the value $\mathcal{F}(\theta)$ is polynomially-bounded by the size of Φ , DB, and \mathcal{F}
- a list L of evaluation functions is smooth if it consists of a constant number of smooth evaluation functions

CSOP Extensions: Smooth Functions

- Manipulate small (polynomially bounded) values
- Occur in many applications (for instance, in countingbased optimizations)
- May be non-monotonic

Examples of Smooth Functions

- 1. Finding solutions minimizing the number of variables mapped to certain domain values
 - It is smooth and monotone
- 2. Finding solutions with an odd number of variables mapped to certain values (e.g. switch variables)
 - It is smooth and non-monotone
- 3. [2,1] (or viceversa) is a smooth list of evaluation functions

- The classical dynamic programming approach does not work, with non-monotone functions
 - Good (partial) solutions in the subtree may lead to bad final solutions

A Subtle Issue

A Subtle Issue

Binarization

A Subtle Issue

Binarization

Appendix: TP-coverings