
Development of a simple numerical simulator of

non-inertial fluids: 3D visualization in OpenGL

Core Profile and multi/many-core parallelization in

OpenCL

Donato D’Ambrosio

Course of Computer Graphics and GPGPU Programming
Master Degree in Computer Science

Department of Mathematics and Computer Science
University of Calabria, Italy

November 4, 2019

1 Introduction

The project consists in the development of a simple scientific application
for the simulation of a non inertial fluid flow, like water, over a complex
topographic surface.

The starting point is the flow application, which is a serial implementa-
tion of a simple fluid-dynamical simulator based on the Celluar Automata
computational model [2], and the Minimization Algorithm of the Differences
[1], this latter considered for computing flows among neighboring cells.

The input to the model is represented by two text files in Ascii Grid
format. The considered data format is made by a header and a data sec-
tion. The header provides information about domain dimensions (number
of columns and rows), geographical coordinates (of the bottom left cell of
the grid), cell size, and a no-data value (used to label the cells with a lack of
information), while the data section, which is a regurlar grid (i.e., a matrix)
of numerical values, represents the information associated to the (square)
domain cells (for instance topographic elevation or mass thickness). An
example is shown below and graphically represented in Figure 1:

ncols 10

nrows 10

xllcorner 2487289.5023187

yllcorner 4519797.0771414

cellsize 10.0

NODATA_value -9999

9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.00

8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.00 1.00

7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.00 1.00 2.00

6.00 5.00 4.00 3.00 2.00 1.00 0.00 1.00 2.00 3.00

5.00 4.00 3.00 2.00 1.00 0.00 1.00 2.00 3.00 4.00

4.00 3.00 2.00 1.00 0.00 1.00 2.00 3.00 4.00 5.00

3.00 2.00 1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00

2.00 1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

Each cell of the square grid interacts with a small set of neighboring cells
adjacent to it. In this model, the considered stencil is the von Neumann one
that, besides the central cell, takes into account the adjacent cells along the
North, Est, West and South directions. An index is assigned to each cell: 0
to the central one, 1 to the north neighbor, and so on, as shown below.

|1:(-1, 0)|

|2:(0,-1)|0:(0, 0)|3:(0, 1)|

|4:(1, 0)|

1

Figure 1: Graphical representation of the 10x10 Ascii Grid. It is based on a
straightforward color mapping technique, which simply assigns the
color black to the cell with the lowest value, white to the one with
the highest value and grey tones to cells having intermediate values.

Cells IDs (from 0 to 4) and relative (row, column) coordinates with respect
to the central cell (having relative coordinates (0,0)) are also shown in the
scheme reported above.

The cell state is defined by the following information (substates):

• topographic altitude, z;

• mass thickness, h;

• values of the four outflows from the central cell towards its neighboring
cells, o[i] (i = 1, ..., 4).

Each substate layer, which formally is a 2D matrix of real values, is coded
as a linearized array of type double*, arranged by rows. In particular, the
flow application considers the following layers:

• Sz is the layer representing the z information;

• Sh is the layer representing the h information;

• So[0] is a fictitious layer (memory is not allocated) used to let the
other flow indices to correspond to the proper neighboring cell (since
the central cell has index 0);

• So[1] is the layer representing the amount of h that otflows towards
the neighbor with index 1

• So[2] is the layer representing the amount of h that otflows towards
the neighbor with index 2

2

• So[3] is the layer representing the amount of h that otflows towards
the neighbor with index 3

• So[4] is the layer representing the amount of h that otflows towards
the neighbor with index 4

Two macros (get and set) are used to access values defining the cell’s
state (substates) based on the cell’s integer coordinates. Please, note that
the number of columns must also be provided to the macros, since the linar-
ized matrices are arrangeb by rows (and therefore the number of columns
represents the number of elements in each row).

The initial configuration of the system is defined as follows:

• a topographic map is read from a file to initialize the Sz substate layer;

• a mass thickness map is read from a file to initialize the Sh substate
layer;

• the outflow substate layers are initilized to zero.

Boundary conditions are very simplyfied and consist in ignoring (i.e. not
evaluating the state transition for) the cells belonging to the grid boundaries.

At each iteration step, three basic sub-steps (aka kernels, local processes,
or elementary processes) are computed:

• kernel1: flow computation. Computes the outflows from the cen-
tral cell to the neigboring cells (by applying the Minimization Algo-
rithm of the Differences). The algorithm takes in intput the total head
(H=z+h) of the cells belonging to the neighborhood and evaluates the
outflows by minimizing unbalance conditions. Computed outflows are
therefore stored into the outflow substate layers So[i] (i=1,...,4).

• kernel2: mass balance. New thickness values are evaluated by sub-
tracting the outgoing flows from the central cell and by adding the
ingoing flows coming from the adjacent neighbors. The Sh layer is
updated.

• kernel3: outflow. The So[i] (i=1,...,4) layers are set to zero.

To build the progrma, open a terminal window, go to the application
directory (the one containing the CMakeLists.txt file) and give the following
command:

cd build/ && cmake -DCMAKE_BUILD_TYPE=Release ../ && make && cd ..

Eventually, give the command below to perform a simulation of 4000 steps
using the ./data/dem.asc and and ./data/source.asc files to initilize the
Sz and the Sh substate layers, respectively:

3

(a) Initial configuration (b) Final configuration

Figure 2: Initial and final configuration (after 4000 computational steps) of the
system.

./build/flow ./data/dem.asc ./data/source.asc 4000

The (serial) simulation should last less than half a minute and, as a
result, the ./data/source.asc.out file will be created, with the final con-
figuration of the Sh substate layer. Figures 2a and 2b show the initial and
final configuration of the system, respectively.

2 Graphics

A GLFW application must be developed based on the flow application in
order to render the simulation at prefixed steps (e.g. at multiples of 100
steps). In order to graphically render the system configuration (Sz and Sh

layers), follow the steps described below.
As a first preliminary step, simply represent the topographic surface by

using triangle strips, a triangle strip for each row of the matrix. We will
refer such a representation as grid representation. The color of the resulting
cells has to be assigned by considering the value of the upper left point. In
this way, a matrix of n·m points produces (n−1)·(m−1) cells, as illustrated
in Figure 3a. Pay attention to the proper management of NODATA_value,
that should not be displayed.

As a second step, draw the surface representing a cell for each point
in the matrix. The cell must be built around the known point, as shown

4

(a) Initial configuration (b) Final configuration

Figure 3: (A) Grid-based representation of the example surface, where known
altitudes are evidenced by red points. (B) Cell-based representation
of the same surface (known altitudes are still evidenced in red). A
cell, made by 4 further vertices (in green), is built around each known
point.

in Figure 3b. In this way the color of the cell can be assigned by simply
considering the elevation of the cell itself. Note that, using the cell-based
representation, a matrix of n ·m points produces exactly n ·m cells. Again,
pay attention to the proper management of NODATA_value, that should not
be displayed.

Once the topographic data, i.e. Sz, has been properly represented, the
mass thickness, Sh, can be simply rendered by considering the same proce-
dure, adopting a different color legend (for instance a green or reed one) to
represent tickness values. An example is reported in Figure 4b, where both
a 3D representation of the system is shown and the Phong lighing model is
considered for shading the different domain cells depending on their orien-
tation into the 3D space.

3 Parallel Computing

Under construction...

References

[1] S. D. Gregorio, R. Serra, An Empirical Method for Modelling and Sim-
ulating some Complex Macroscopic Phenomena by Cellular Automata,
Future Generation Computer Systems 16 (1999) 259–271.

5

(a) Simulation 3D view (b) Detail of 3D view

Figure 4: Three dimensional representation of the system. The topographic
layer is represented, together with the mass thickness. The Phong
model is usd to shade the topographic data, based on the cells ori-
entation, while a direct red-tones color mapping is used to shade the
mass thickness.

[2] J. von Neumann, Theory of Self-Reproducing Automata, University of
Illinois Press, Champaign, IL, USA, 1966, edited by Arthur W. Burks.

6

	Introduction
	Graphics
	Parallel Computing

