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Abstract—Here we present different preliminary parallel grid-
based implementations of a simple particle system with the
purpose to evaluate its performances on multi- and many-
core computational devices. The system is modeled by means
of the Discrete Element Method and the Extended Cellular
Automata formalism, while OpenMP and OpenCL are used for
parallelization. In particular, both the 3.1 and 4.5 OpenMP
specifications have been considered, the latter also able to run on
many-core computational devices like GPUs. The results of a first
test simulation performed by considering a cubic domain with
about 316,000 particles have shown a clear advantage of OpenCL
on the considered Tesla K40 Nvidia GPU, while the OpenMP 3.1
implementation has performed better than the corresponding
OpenMP 4.5 on the considered Intel Xeon E5-2650 16-thread
CPU.

Index Terms—Discrete Element Method, Cellular Automata,
OpenMP, OpenCL, Heterogeneous Computing

I. INTRODUCTION

Particle and granular systems are ubiquitous and can be

found in various natural phenomena as well as several in-

dustrial processes. Differently than gases or liquids, flowing

particles cannot be described by continuum models (e.g. Com-

putational Fluid Dynamics), as they inherently fail to represent

the discrete nature of the material. The Discrete or Distinct

Element Method (DEM) [1] allows the dynamic simulation of

particulate solids both under quasi-static and highly dynamic

conditions, by tracking the motion of individual particles along

the domain, i.e. within a Lagrangian framework.

Even if mesh-less approaches are usually adopted to im-

plement DEM systems [2], we experimented an alterna-

tive approach based on the Cellular Automata computational

paradigm [3]. A uniform grid based model was therefore

developed, in which the space is subdivided in cubic cells, each

one able to contain a limited number of particles. Collisions

detection of a generic particle with the others is therefore
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limited to the central cell and its neighbors, which can in

principle give rise to better performances. However, the major

drawback of this alternative approach is the memory usage,

needed to represent the cellular space.

Some preliminary implementations of the Cellular Au-

tomata model, which we will refer to as CADEM in the

following, were developed by considering the OpenMP and

OpenCL APIs for Parallel Computing. OpenCL [4] is a

low-level widely adopted solution for parallel heterogeneous

computing. As a consequence, even if it is able to provide high

computational performance and has the great advantage of

the portability (OpenCL applications can run on a wide range

of heterogeneous parallel computational devices), it generally

requires a great developing effort during the parallelization

process since it needs a significant reorganization of the serial

code. In OpenMP 4.5 [5], at the contrary, a minimal effort is

necessary, since it is based on the usage of a set of directives

that can be added to the serial code, without the need to change

the serial organization of the application, or to consider further

complex data structures or explicitly manage data exchange

between the host and the computational device (e.g. a GPU).

A direct OpenMP implementation of CADEMwas therefore

developed by considering the 4.5 specification of the API,

which is particularly interesting since it permits to exploit

both multi-core CPUs and many-core devices, like Nvidia

GPUs. Moreover, two additional versions were developed,

both of them based on the OpenCAL computational library [6],

which is particularly suitable for seamless parallel implemen-

tation of uniform grid Computational Fluid Dynamics (CFD)

models. In fact, OpenCAL allows for the straightforward

definition of Cellular Automata- and Finite Differences-based

simulation models of complex systems, by also supporting

Extended Cellular Automata (XCA) and all those computing

paradigms based on regular computational grids. In particu-

lar, the OpenCAL-OMP and OpenCAL-CL components were

taken into account, resulting in two CADEM implementations
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based on the OpenMP 3.1 and OpenCL 1.2 specifications,

respectively. The first one is suitable for multi-core CPUs,

while the second for a wide range of parallel heterogeneous

devices, GPUs included. In the following, we will refer

to the different implementations as CADEMOMP4
for the

OpenMP 4.5 version, CADEMOMP3
for the OpenCAL-

OMP, and CADEMOCL1
for the OpenCAL-CL versions,

respectively. The paper is organized as follows: Section II

briefly describes the considered DEM model and how it was

modeled as a cellular automaton; Section III presents the

different CADEM implementations; Section IV describes the

considered simulated system and the computational results

obtained on the considered heterogeneous devices; eventually,

Section V concludes the paper with a general discussion

about the presented research and outlooks for possible future

developments.

II. CADEM : A SIMPLE CELLULAR AUTOMATA-BASED

DEM MODEL

Fig. 1. Sketch of collision between two spherical particles, pi and pj , having
the same radius r, in the physical model. The collision takes place when the
distance between the particles’ centers, dij , is lower than ri + rj = 2r. In
such a case, a repulsive force, defined as in Equation 2, is applied to both
particles along the normal direction nij .

The CADEMmodel is a Cellular Automata-based imple-

mentation of a simple three-dimensional DEM in which each

particle is considered as perfect sphere of constant radius.

Particles are subject to the gravity force and can collide with

each other, besides with the domain boundaries. Only normal

visco-elastic collisions are taken into account in this first

version of the model (cf. Figure 1).

In the following part of this Section, DEM and XCA are

briefly described, and eventually the CADEMmodel formally

defined.

A. DEM Models

As stated earlier, the Discrete Element Method requires

individual particle trajectories to be resolved along the system.

Generally, DEM models are available to include rotational

effects, fluid drag force in multi-phase gas-solid or liquid-solid

systems, particle-particle cohesive forces, etc. In the present

simplified implementation, only the translational motion of the

particles is calculated using Newton’s second law of dynamics.

Similar to the original formulation of Cundall and Strack

[1], only gravity and contact forces arising from particle-

particle and particle-wall contacts are considered. A soft-

sphere approach is adopted to correctly handle simultaneous

multi-particle and/or enduring contacts. Thus, for each particle

considered we write:

ma = mg +

nc∑

j=1

f c,j , (1)

where m and a are the particle mass and linear acceleration,

respectively; in the right hand-side, the total force is obtained

by adding the sum of the contact forces f c,j exerted by each

j of the nc bodies (i.e. partcles, walls) touching the particle

considered to the gravity force.

During collisions, rather than taking micro-deformations

into account, the integral solutions from classical mechanics

are used, which relate the repulsive elastic forces to the

macroscopic distance between the particle centers. In other

words, the particles are assumed to keep their spherical shape

while overlapping and the contact force is proportional to

the degree of overlap. The contact forces at play during

oblique collisions would require also tangential forces and

deformations to be taken into account, but as previously

mentioned the associated complexities (e.g. including effects

of partial friction or total sliding) prevented the inclusion of

such effects in this preliminary exercise.

On the other hand, realistic collisions including the resti-

tution effect (e.g. as a result of plastic or visco-elastic defor-

mations) are considered by means of a damping contribution

in the calculation of the total force. When based on linear

relationships, this corresponds to the linear spring-dashpot

contact model. As demonstrated by [7] for single collisions, its

simplicity is combined with a sufficient accuracy for dynamic

systems. The overall implementation is based on the following

simple formula:

fn = −kn δn − ηn vrn (2)

The material parameters are the spring constant kn and the

damping coefficient ηn. The first one determines the stiffness

of the contact materials in the elestic regime; the second

one influences the degree of energy dissipation by plastic

deformation, giving rise to particles that bounce less (or more)

depending on its high (or low) value. Both parameters can

be related to data (Young’s modulus, Poisson ratio, rebound

height in particle drop tests) obtained by carefully designed

experiments [8]. The other quantities are the relative displace-

ment (overlap) between the contacting bodies δn and their

instantaneous relative velocity vrn.

Equation 2 applies during both particle-particle and particle-

wall collisions. In the former case, the overlap is calculated

by δn = (ri + rj) − ‖xi − xj‖, where x are the particle’s

centre positions and r their radii; the relative velocity is simply
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vrn = (vi − vj) ·nij nij , in which v is the particle velocity.

In the latter case, the force is a function only of the particle

distance and velocity with respect to the wall.

The soft-sphere DEM requires the integration time-step to

be a (small) fraction of the collision duration. By assuming

purely elastic collisions to estimate such time τ , the following

expression can be used to set the time-step size Δt:

Δt =
τ

Nt
=

π
√
m/kn
Nt

(3)

where Nt is the number of time subdivisions, typically

within the range 10–50.

Particle motion simulation is carried out by applying

forward-projected integration formula to the equation of mo-

tion. Let ai = f i/m be the acceleration of the ith particle,

then the new velocity, v′, and position, x′, are obtained by:

v′i = vi + aiΔt

x′i = xi + viΔt
(4)

B. Extended Cellular Automata

The Cellular Automata (CA) computational paradigm in-

troduced a new approach in treating some complex systems,

whose behaviour may be expressed in terms of local laws.

Originally introduced by von Neumann in the 1950s to study

self-reproduction issues, CA are particularly suited to model

and simulate classes of complex systems characterized by

a large number of interacting elementary components. The

complexity of the system emerges from the interactions of its

elementary (cellular) units, by applying relatively simple local

rules. A CA can be intuitively considered as a d-dimensional

space (the cellular space), partitioned into cells of uniform

size. Each cell embeds an identical computational device:

the finite automaton (fa). Input for each fa is given by the

fa’s states located in the neighbouring cells. To this purpose,

neighbourhood conditions have to be determined through a

geometrical pattern, which is invariant in time and constant

over the cells. At time t = 0, fa’s states define the CA initial

configuration. The CA then evolves step by step by means of

the fa’s transition function, which is simultaneously applied

to each fa. Despite their simple definition, CA can exhibit

very interesting complex global behaviors. Moreover, from a

computational point of view, they are equivalent to Turing

Machines.

Among different fields, fluid-dynamics is one of the most

important applications for CA and many different CA-based

methods can be found in the literature to simulate fluid flows

(e.g., [9]–[12]). Among them, Extended Cellular Automata

(XCA) [13] represent an extension of the original CA compu-

tational paradigm and have proven to be suitable for simulating

complex natural phenomena like lava flows (e.g., [14]–[16])

and debris flows (e.g., [17], [18]). XCA were firstly applied

to the simulation of basaltic lava flows in the 80’s [19] and

many subsequent examples of application showed that the

approach behind XCA can greatly make more straightforward

the modeling of different (natural) complex systems.

Informally, XCA, compared to classical CA, are different

because of the following properties that can be taken into

account when evaluating the next state of a cell:

• Global operations, also known as steering operations,

can be allowed (e.g. to model external influences or to

perform reductions over the whole, or a subset, of the

cellular space under consideration);

• A set of parameters, commonly used to characterize the

dynamic behaviors of the considered phenomenon, can

be defined;

• The cells state is decomposed in substates, each of them

representing the set of admissible values of a given

characteristic assumed to be relevant for the modeled

system and its evolution (e.g., lava temperature, lava

thickness, etc, in the case of a lava flow model). The set

of states for the cell is simply obtained as the Cartesian

product of the considered substates;

• As the cells state can be decomposed in substates, also the

transition function can be split into elementary processes,

each of them representing a particular aspect that rules

the dynamic of the considered phenomenon. In turn,

elementary processes can be split into local interactions,

which refer to rules that deal with interactions among

substates of the cell with neighbor ones (e.g. mass

exchange with neighbors) and internal transformations,

defined as the changes in the values of the substates

due only to interactions among substates inside the cell

(e.g. the solidification of the lava inside the cell due to

temperature drop).

As a consequence, the natural phenomenon is modeled in

terms of elementary processes, whose proper composition

makes up the transition function of the automaton. By simul-

taneously applying the transition function to all the cells, the

evolution of the phenomenon can be simulated in terms of

modifications of the cell substates.

C. CADEMFormal Definition

The CADEMXCA computational model is formally de-

fined as:

CADEM =< R,X,Q, P, σ >

where:

• R is the set of points, with integer coordinates, which

defines the three-dimensional domain over which the phe-

nomenon evolves. The generic cell in R is individuated

by means of a set of integer coordinates (i, j, k), where

0 ≤ i < imax, 0 ≤ j < jmax, and 0 ≤ k < kmax.

• X is the three-dimensional von Neumann neighborhood

relation (cf. Figure 2)

• Q is the set of cell states. Each cell is logically subdivided

in slots, each of them representing a portion of space

which can contain a particle. The number of particles

that a cell can contain is evaluated by considering the

maximum occupancy volume of a set of spheres having

the same radius, according to Kepler’s conjecture. Let N
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Fig. 2. The three-dimensional Moore neighborhood (a). Central cell is
represented in dark gray, adjacent cells in light gray. A reference system is
here considered to evaluate cells coordinates in terms of row, column and slice
indices in a matrix-style representation, and a 0-based numerical identifier,
which is better visible in (b), assigned to each cell in the neighborhood for
straightforward access.

denote the number of cell slots, i.e. the maximum number

of particles per cell, Q is subdivided in the following

substates:

– Qid = {BOUNDARY, V OID,PARTICLE}N is

the set of values representing the slots state. The slot

can in fact: 1) mark a piece of the boundary; 2) be

void; 3) contain a particle;

– Qp = (Qpx × Qpy × Qpz )
N is the set of values

representing the position of the (at most N ) particles

inside the cell with respect to a 3D Cartesian coordinate

system;

– QF = (QFx
× QFy

× QFz
)N is the set of values

representing the forces applied to the particles inside

the cell;

– Qv = (Qvx
× Qvy

× Qvz
)N is the set of values

representing the velocities of the particles inside the

cell.

The Cartesian product of the substates defines the overall

set of states Q:

Q = Qid ×Qp ×QF ×Qv

Accordingly, the slot state, qs, is specified by the follow-

ing tuple:

qs = (qid, qpx , qpy , qpz , qFx , qFy , qFz , qvx , qvy , qvz )

and the cell state, q, by the qs assignements, with s =
1, 2, · · · , N .

• P is the set of parameters ruling the model dynamics:

– pkn is the parameter specifying the contact stiffness;

– pη is the contact damping coefficient;

– pm is the particle mass;

– pr is the particle radius;

– pc is the cell side;

– pNt is the number of time subdivisions for the Δt (cf.

Equation 3).

• σ : Q27 → Q is the deterministic cell transition function.

It is composed by the following elementary processes,

listed below in the same order as they are applied:

– σ1 : Qid × QF → QF resets the applied forces to

each particle in the cell to the gravity force. The force

applied to boundary particles is initialized to zero and

does not change during the simulation.

– σ2 : Qid × Qp × Qv → QF evaluates changes in the

applied forces due to collisions among particles inside

the cell. In particular, a loop processes the generic

particle pi (i = 1, 2, . . . , N − 1) and, for each of

them, evaluates the distances with respect to the others

particles pj of higher index (j = i+1, i+2, . . . , N ). If

the distance dij between the two particles is lower than

2pr, then a collision occurs and the force is computed

according to Eq. 2.

– σ3 : (Qid × Qp × Qv)
27 → QF evaluates changes in

the applied force on the particles inside the central cell

due to collisions with particles located in the neighbors.

In particular, a loop processes the generic particle pi
(i = 1, 2, . . . , N ) and, for each of them, evaluates

the distances with respect to the pj (j = 1, 2, . . . , N )

particles in each neighbor. If the distance dij between

the two particles is lower than 2pr, then a collision

occurs and the force is computed for the particle pi
only as in Equation 2.

– σ4 : Qid×Qp×Qv → Qp×Qv the new positions, q
′
pi

,

and velocities, q
′
vi

(i = 1, 2, . . . , N−1), of the particles

inside the cell are computed by applying Equation 4.

– σ5 : (Qid×Qp)
27 → Q assigns the particles to the cell,

depending on the new position evaluated by the σ4

elementary process. Specifically, the slots containing

particles whose positions are outside the space region

associated with the central cell are marked as available

to receive another particle. Nevertheless, the particle

currently in the slot is temporarily kept in memory,

since it will be subsequently assigned to an available

slot in a neighboring cell. At the end of this first

phase, a second stage follows in which, if necessary,

neighboring cells’ particles are reassigned to the central

cell according to their updated position.

III. THE DIFFERENT CADEM IMPLEMENTATIONS

As already stated, different CADEMparallel implementa-

tions were considered in this work, all of them adopting double

precision floating point numbers. Some of them are based on

the OpenCAL simulation library, namely CADEMOMP3 and

CADEMOCL1 , which are able to run on multi- and many-

core devices, respectively. In addition, a further parallel ver-

sion, namely CADEMOMP4
, was developed by directly

parallelizing the CADEMserial implementation by means of

OpenMP 4.5 APIs. In this latter case, the CADEMserial

implementation was still based on OpenCAL (as for the

other parallel versions), but with the difference that only its

lower-level components regarding buffers management were

considered. This was necessary because the current OpenMP
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4.5 support provided by the compilers (e.g. gcc and clang)

ensures optimal speed-up performances with the simplest

possible data structures and loops (cf. [20], [21]). This latter

serial version was considered as reference for performance

comparison. A static scheduling was considered for the CPU

parallel implementations of CADEM, while a one-thread/one-

cell policy for those implementations developed to run on

many-core devices.

A. The OpenCAL parallel implementations of CADEM

Thanks to OpenCAL, the CADEMOMP3 and

CADEMOCL1
implementations were straightforward.

A CALModel3D model object was considered to define a

three-dimensional computational domain where, for each

cubic cell, the Moore neighborhood was considered (cf.

Figure 2). No OpenCAL built-in specific optimizations,

which can be considered at model object definition time,

were adopted in these first implementations.

As regard particles modelling, an array of N substate

objects was considered for each particle characteristic, like

force or velocity, where N is the number of cell slots.

For instance, the CALSubstate3Dr Fx[N] array of N
substates was considered to model the x component of

the force acting on the particles allocated into the N cell

slots. A calRunDef3D simulation object was also consid-

ered for the CADEMOMP3
implementation, to transpar-

ently allow the simulation to be executed on OpenMP 3.1

compliant multi-core processors, while a CALCLModel3D
device-side model object was defined in the case of the

CADEMOCL1
implementation to transparently perform host

to/from device data transfer. The device global memory was

considered in this first CADEMOCL1
implementation, as

well as in the CADEMOMP4 one. The CALCLModel3D
device-side model object was also needed to run the simulation

on an OpenCL compliant many-core device. A stopping crite-

rion based on the time interval to be simulated was considered

and the transition function’s elementary processes defined in

terms of OpenCAL callback functions and OpenCL kernels

for the CADEMOMP3 and CADEMOCL1 implementations,

respectively. As an example, the OpenCAL callback function

implementing the σ1 elementary process is shown below:

void sigma1(CALModel3D* dem,
int i,
int j,
int k)

{
CALreal F[3] = {0.0, 0.0, -PARTICLE_MASS*G};

for (int s = 0; s < N; s++)
if (calGet3Di(dem,ID[s],x,y,z) == PARTICLE)
{
calSet3Dr(dem,Fx[s],i,j,k,F[0]);
calSet3Dr(dem,Fy[s],i,j,k,F[1]);
calSet3Dr(dem,Fz[s],i,j,k,F[2]);
}

}

In the above implementation of the σ1 elementary process,

dem represents the model object, while i, j, and k the generic

cell’s integer coordinates within the three-dimensional domain.

The s index is used to access the N cell’s slots, within which

a particle can be found. The F array of CALreal values (i.e.

double precision floating point numbers) is used to define the

gravity force and then the cell’s slots are checked. In case a

particle is found (i.e. if the calGet3Di() query function

returns the PARTICLE enumeral), the Fx, Fy, and Fz sub-

states are set by means of the calSet3Dr() OpenCAL API

function. Note that this elementary process does not contain

any parallel code. Nevertheless, thanks to OpenCAL it is con-

currently applied to the computational domain which, for this

purpose, is transparently partitioned in uniform chunks. The

OpenCL kernel implementation of the σ1 elementary process

is equivalent to the callback function shown above, with the

difference that different OpenCAL API functions are adopted

(e.g. the calclSet3Dr() function is used, instead of the

calSet3Dr() one, to update values stored in the device’s

global memory, transparently to the user). The remaining

elementary processes are implemented in a similar way by

keeping the parallelism transparent to the user. Eventually,

the simulation is run by means of the calRun3D() and

calclRun3D() API functions for the CADEMOMP3 and

CADEMOCL1
implementations, respectively.

B. The OpenMP 4.5 implementation of CADEM

According to OpenMP 4.5, the parallelization of

CADEMOMP4
was based on pragma directives which,

added to the serial code, allowed to both map data and run

the computation on a compliant device (a Nvidia GPU in

the specific case). Neither explicit low-level data mapping

between host and device or CUDA/OpenCL kernels definition

were required. However, a slight serial code reorganization

was preliminary performed, which replaced the originally

adopted OpenCAL high-level data structures with linear

C buffers, since this is required by the current OpenMP

implementation embedded in the adopted Clang compiler

[20]. In particular, the CADEMOMP4 double precision

substates were modeled by means of two linear buffers,

Q_current and Q_next, which grouped the current and

next buffers of all the CADEMOMP4
substates, respectively,

and the cal{G|S}etBuffer3DElement()1 functions

adopted to explicitly access the buffer elements, in spite of

the higher level cal{G|S}et() ones. The only integer

substate was also split into two different buffers, which

are ID_current and ID_next, respectively. Data was

then straightforwardly mapped to the device memory before

the beginning of the computation phase by means of the

enter data map target, as shown below:

#pragma omp target \
enter data map(to:ID_current[0:DIM])

#pragma omp target \

1The {p1|p2|...|pn} notation here defines a list of n mutually
exclusive parameters.
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enter data map(to:ID_next[0:DIM])
#pragma omp target \

enter data map(to:Q_current[0:DIM])
#pragma omp target \

enter data map(to:Q_next[0:DIM])

In order to offload elementary processes to be executed on the

compliant device, their prototypes were preliminary declared

inside a #pragma omp declare target region, like in the

following example:

#pragma omp declare target
void sigma1( CALint* ID_current,

CALreal* Q_next
int i,
int j,
int k);

#pragma omp end declare target

and therefore run by means of an OpenMP

distribute parallel for target, as shown below for

the case of the σ1 elementary process.

#pragma omp target \
teams distribute parallel for collapse(3)

for (int i = 0; i < X_CELLS; i++)
for (int j = 0; j < Y_CELLS; j++)

for (int k = 0; k < Z_CELLS; k++)
sigma1(ID_current, Q_next, i, j, k);

Here, in particular, the teams clause spawns a number of

threads teams (i.e., CUDA blocks) with the same number of

threads. It is OpenMP that sets both the number of teams

and threads per team, depending on both the problem and the

available hardware. However, these values can be explicitly set

by using the num_teams and thread_limit clauses. In

addition, the collapse(3) clause collapses the subsequent

loops which process the whole domain, and the distribute
directive distributes the iterations to the master thread of each

team.

Eventually, at the end of the computation stage, results are

copied back to the host from the device by means of the

update target, as shown in the following example.

#pragma omp target \
update from(to:ID_current[0:DIM])

#pragma omp target \
update from(to:ID_next[0:DIM])

#pragma omp target \
update from(to:Q_current[0:DIM])

#pragma omp target \
update from(to:Q_next[0:DIM])

IV. COMPUTATIONAL RESULTS AND DISCUSSION

The different parallel implementations of CADEMwere

built by considering different compilers. In particular, Clang

version 42 (cloned by the Clang-ykt GitHub repository,

2The following flags were considered: -O3
-ffast-math -fopenmp=libomp -Rpass-analysis
-fopenmp-targets=nvptx64-nvidia-cuda
-fopenmp-nonaliased-maps -ffp-contract=fast

commit 5340d) was adopted to build CADEMOMP4 and

CADEMOMP3 , while the OpenCL compiler embedded in

the Nvidia nvcc compiler version 7.5 was considered3 for the

case of CADEMOCL1
.

Fig. 3. A graphical representation of particle system similar to the one
considered. The system here represented for illustrative purpose is composed
by about 2600 particles, while the one considered in this work by 316,000
particles. Particles are initially randomly distributed in domain bottom, starting
from the ground level up to the 20% of the overall domain height. Each
particle is modeled as a sphere with 0.0005 meters radius. The cubic domain
has a 0.2 meters side and is subdivided in a grid of 100 · 100 · 100 = 106

cells, each one with 11 slots. A total of 11 · 106 particles can be therefore
contained into the domain. The widget in the lower-left corner represents the
adopted 3D coordinate system, where the red, green and blue segments point
out the orientation of the x, y, and z axes, respectively. The origin coincides
with the vertex of the cell located on the lower-left corner.

In order to evaluate the computational performances of

the different implementations of CADEM , a simple particle

system was considered, which is similar to the one shown

in Figure 3 (this latter showing - for illustrative purposes -

a configuration with few particles with respect to the one

actually simulated). The particle system is constrained within

a cubic domain of 0.2 m side. A set of 316,000 particles

is initially randomly distributed in the bottom part of the

domain, starting from the ground level, i.e. from z = 0 m,

up to the 20% of the domain height, i.e. up to z = 0.04 m.

The particles are positioned in a way so that there are no

collisions. The system is therefore evolved for a total of 0.1

seconds, which is an amount of time sufficient to let all the

particles reach the ground and to collide a sufficient number

of times to properly evaluate the computational performances.

The CADEMparameters adopted for the simulation are listed

in Table I. In particular, the choice of setting pkn to 8000

3The default nvcc flags were considered.
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has determined a time-step equal to 1.118 · 10−5 seconds.

Accordingly, a total of 8945 steps were necessary to complete

the simulation4.

Two different devices were considered for simulating the

above described dynamical system, namely an Intel Xeon

2.0GHz E5-2650 16-thread CPU and a Nvidia K40 GPU.

The first one was considered for the CADEMOMP4
and

CADEMOMP3
experiments, whose computational re-

sults are shown in Figure 4, while the second for the

CADEMOMP4 and CADEMOCL1 ones, whose results are

shown in Figure 5.

As regards the numerical correctness, the parallel simula-

tions executed on the CPU perfectly matched the serial one,

while those performed on the GPU evidenced a negligible

difference in the particles’ positions, which is of the 10−5

meters magnitude.

The speed-up registered on the CPU by the OpenMP 3.1

and OpenMP 4.5 implementations of CADEM (cf. Figure

4) showed a sub-linear speed-up increase trend according

to the adopted threads. Here the OpenCAL-based imple-

mentation, i.e. the one based on OpenMP 3.1, exhibited

slight better performances, probably due to the fact that

the CADEMOMP4
implementation was mainly developed

for execution on many-core devices, likely introducing an

overhead when the code is run on the CPU.

A greater gap of CADEMOMP4 with respect to

CADEMOCL1 is observed when the simulation is executed

on the GPU, as is evident from Figure 5. Here, the reasons

under the poor results obtained by CADEMOMP4
need to

be better investigated. We think that one reason could be

due to the not definitive implementation of the OpenMP 4.5

specifications embedded into the adopted Clang compiler that,

for the considered model source code, is not able to properly

translate some specific kernels written in the high level serial

code into CUDA. In particular, nvprof profiling that was

considered in tests has evidenced that one kernel, the σ3

elementary process, takes about 75% of the total execution

time, while the same process takes 40% on the OpenCL

version. Nevertheless, the same version of the Clang compiler

here considered was able to provide good performances on at

least a different application [22]. As a consequence, the issue

has certainly to be further investigated.

Eventually, as regards the obtained results in absolute terms,

it is worth to note that the simulated system is characterized

by a great load unbalance, since the particles are confined to

the bottom 20% of the whole domain. Better performances

could certainly be obtained in the case of uniform distribution

or if a load balance algorithm is adopted.

V. CONCLUSIONS

In this work we have presented CADEM , a simple DEM

model applied to the simulation of a system composed of

about 316,000 particles in a cubic spacial domain. Particles

are subject to gravity force and can collide with each other and

4The expression 0.1
√

pm/pkn was adopted to evaluate the time-step.

TABLE I
THE PARAMETERS ADOPTED BY THE CADEM SIMULATION OF THE

PARTICLE SYSTEM OF ABOUT 316,000 PARTICLES CONSIDERED IN THIS

STUDY. A GRAPHICAL REPRESENTATION OF A SIMILAR SMALLER SYSTEM

WITH ABOUT 2600 PARTICLES IS GIVEN IN FIGURE 3.

Parameters
pkn pη pm pr pc pNt

Values 8000 0.0015 0.0001 0.0005 0.002 10

Fig. 4. Speed-up obtained by the CADEMOMP4
and

CADEMOMP3
implementations of the CADEMmodel. Elapsed

times in seconds are shown on top of each speed-up vertex. The considered
case study is similar to the one shown in Figure 3, even if a total of
about 316,000 particles was considered and the system was evolved for 0.1
seconds. The adopted CPU was an Intel Xeon 2.0GHz E5-2650.

Fig. 5. Speed-up obtained by the CADEMOMP4 and
CADEMOCL1

implementations of the CADEMmodel. Elapsed
times in seconds are shown on top of each speed-up bar. The considered case
study is similar to the one shown in Figure 3, even if a total of about 316,000
particles was considered and the system was evolved for 0.1 seconds. The
adopted GPU was a Nvidia Tesla K40.
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with the domain boundaries. In this preliminary model, only

normal visco-elastic collisions have been taken into account.

Three different implementations have been developed, each

one based on the XCA formalism and characterized by a dif-

ferent parallelization approach. The 3.1 and 4.5 specifications

of OpenMP and OpenCL version 1.2 have been considered

for the different CADEMparallelizations. In particular, the

open source freely available OpenCAL parallel library was

considered for the OpenMP 3.1 and OpenCL 1.2 imple-

mentations, since it provides a transparent support to these

parallel computing APIs. According to the adopted modeling

formalism, a uniform grid of cubic cells has been considered

to model the spatial domain, resulting in a mesh-based im-

plementation for each developed implementation. This choice

was considered as a first step of a broader work in which a

comparison with classical mesh-free implementations will be

performed. Results have been evaluated on a 16 thread Intel

Xeon CPU and a Nvidia K40 GPU. In particular the OpenMP

3.1 implementation has been tested one the CPU, the OpenCL

one on the GPU, while the OpenMP 4.5 implementation on

both devices. The OpenCL implementation has demonstrated

to perform better, while the OpenMP 4.5 has been the one

showing the worst performances in terms of speed-up. This

could be due to the not mature implementation of the current

OpenMP 4.5 specifications within the adopted Clang compiler,

which is not able to fully optimize the CUDA code for the

considered test case. This aspect will be investigated in detail

in a future work and, besides considering other test cases,

equivalent mesh-free implementations of CADEMwill be

developed to compare them with the implementations here

presented, both in terms of memory usage and computational

performances. Moreover, once the next OpenCAL release

will be completed, multi-node/multi-GPU implementations of

CADEMwill be developed and, together with those here

described, tested on different configurations in order to account

for both computationally unbalanced and balanced particle

systems.
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