
Computer Graphics and GPGPU Programming

Donato D’Ambrosio

Department of Mathematics and Computer Science
and Center of Excellence for High Performace Computing

Cubo 22B, University of Calabria, Rende 87036, Italy
mailto: donato.dambrosio@unical.it

homepage: http://www.mat.unical.it/~donato

Academic Year 2017/18

Donato D’Ambrosio (University of Calabria) Academic Year 2017/18 1 / 14

mailto:donato.dambrosio@unical.it
http://www.mat.unical.it/~donato


Course Introduction

Course Introduction

Donato D’Ambrosio (University of Calabria) Academic Year 2017/18 2 / 14



Course Introduction

Master degree course in Computer Science
Artificial Intelligence and Games profile
Data Science profile

Main topics
Computer Graphics programming in OpenGL core profile
Global illumination (Ray Tracing)
GPGPU programming in OpenCL

Prerequisites: basic level C/C++ programming
Suggested resources/textbooks

Learn OpenGL web course (http://learnopengl.com/)
Course slides about fundamental algorithms of Computer Graphics
Introduction to Ray Tracing
(http://www.scratchapixel.com/)
Heterogeneous Computing with OpenCL 2.0, D. Kaeli et al.,
Elsevier
Ray tracing with OpenCL (https://www.gamedev.net/blogs/
entry/2254170-realtime-raytracing-with-opencl-i/)

Donato D’Ambrosio (University of Calabria) Academic Year 2017/18 3 / 14

http://learnopengl.com/
http://www.scratchapixel.com/
https://www.gamedev.net/blogs/entry/2254170-realtime-raytracing-with-opencl-i/
https://www.gamedev.net/blogs/entry/2254170-realtime-raytracing-with-opencl-i/


Course Introduction

Further readings
OpenGL Programming Guide Eighth Edition, Dave Shreiner et al.,
Addison-Wesley
3D Computer Graphics, Alan Watt, Pearson, Addison-Wesley
OpenCL in Action, M. Scarpino, Manning
NVIDIA CUDA C Programming Guide
developer.download.nvidia.com/compute/cuda

Exam
Written examination (about 10 questions on Cmputer Graphics and
GPGPU computing)
Student project (a 3D Coputer Graphics project in OpenGL core
profile)

Office ours: Tuesday, from 17:00 to 18:00, Cubo 22B (in case of
special needs, send me an email)

Donato D’Ambrosio (University of Calabria) Academic Year 2017/18 4 / 14

developer.download.nvidia.com/compute/cuda


Introduction

Table of contents

1 Introduction

Donato D’Ambrosio (University of Calabria) Academic Year 2017/18 5 / 14



Introduction

Introduction

Introduction

Donato D’Ambrosio (University of Calabria) Academic Year 2017/18 6 / 14



Introduction OpenGL Core Profile

OpenGL core and compatibility profile

OpenGL is a standard API defined by Khronos Group that
applications can use to access and control the graphics
subsystem (i.e. the Graphics Processing Unit, or GPU)
Originally developed by Silicon Graphics (SGI), the first open (1.0)
version was released in June of 1992
In 2008, with the 3.3 specification, the Architecture Review Board
(ARB) decided it would fork OpenGL into two profiles: core
(strongly recommended) and compatibility

Donato D’Ambrosio (University of Calabria) Academic Year 2017/18 7 / 14



Introduction OpenGL Core Profile

OpenGL core and compatibility profile

The compatibility profile maintains backwards compatibility with all
revisions of OpenGL back to version 1.0
On some platforms, newer features are only available if you are
using the core profile of OpenGL
Application written using the core profile of OpenGL will run faster

Donato D’Ambrosio (University of Calabria) Academic Year 2017/18 8 / 14



Introduction Graphics Pipeline

OpenGL Shaders and the Graphics Pipeline

The graphics system is broken
into a number stages, each
represented either by a
programmable shader (square
boxes) or by a fixed-function
(rounded boxes)
The minimal useful pipeline
configuration consists only of a
vertex shader (or just a
compute shader), but if you
wish to see any pixels on the
screen, you will also need a
fragment shader

Donato D’Ambrosio (University of Calabria) Academic Year 2017/18 9 / 14



Introduction Graphics Pipeline

Graphics Pipeline’s Front and Back End

The graphics pipeline is broken down into two major parts
The first part, often known as the front end, is constituted by the
vertex, tessellation and geometry shaders and processes vertices
and primitives, eventually forming them into the points, lines, and
triangles that will be handed off to the rasterizer. This is known as
primitive assembly
After the rasterizer, the geometry has been converted from what is
essentially a vector representation into a large number of
independent pixels
These pixels are handed off to the back end, which includes depth
and stencil testing, fragment shading, blending, and updating the
output image

Donato D’Ambrosio (University of Calabria) Academic Year 2017/18 10 / 14



Introduction Graphics Pipeline

Primitives, Pipelines, and Pixels

The fundamental unit of rendering in OpenGL is known as the
primitive (such as points, lines, triangles and polygons)
Each primitive is basically defined by its verteices, each one
defining information about a point into the 3D world such as
position, color, besides other (that we will see later), and then
processed by the OpenGL pipeline to produce the final image

Donato D’Ambrosio (University of Calabria) Academic Year 2017/18 11 / 14



Introduction Graphics Pipeline

Rasterizers (GPUs)

Modern GPUs consist of thousands of small programmable
processors called shader cores which run mini-programs called
shaders

Donato D’Ambrosio (University of Calabria) Academic Year 2017/18 12 / 14



Introduction Graphics Pipeline

Rasterizers (GPUs)

Here you can find Nvidia GTX 1080 tech specs:
http://international.download.nvidia.com/
geforce-com/international/pdfs/GeForce_GTX_1080_
Whitepaper_FINAL.pdf

For instance, vertices are processed (for instance, each of them is
translated from its current position to anoter one into the 3D
space) in parallel, each one by a different shader core
There is no interaction between them, so that they can be
processed concurrently without the need of inter communication
among shader cores
However, since OpenGL acts as an abstraction layer, applications
do not need to know details about the graphics processor: who
made it, how many cores it is made by, how it works, or how well it
performs

Donato D’Ambrosio (University of Calabria) Academic Year 2017/18 13 / 14

http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf


Introduction Graphics Pipeline

Practice

Now, it’s time to draw your first triangle

For this purpose, we will consider the GLFW and GLEW APIs and
CMake to build our projects
Later, we will introduce other libs, e.g. GLM (for math purposes)

Donato D’Ambrosio (University of Calabria) Academic Year 2017/18 14 / 14


	Introduction
	OpenGL Core Profile
	Graphics Pipeline


