
Computer Graphics and GPGPU Programming

Donato D’Ambrosio

Department of Mathematics and Computer Science
and Center of Excellence for High Performace Computing

Cubo 22B, University of Calabria, Rende 87036, Italy
mailto: donato.dambrosio@unical.it

homepage: http://www.mat.unical.it/~donato

Academic Year 2018/19

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 1 / 51

mailto:donato.dambrosio@unical.it
http://www.mat.unical.it/~donato

Algorithms

Table of contents

1 Algorithms
Clipping
Rasterization
Hidden surface removal

2 Light
The Phong Model
Shading

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 2 / 51

Algorithms

Algorithms

Algorithms

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 3 / 51

Algorithms

Stages of the OpenGL’s Graphics Process

The graphics process can be split in the following stages:

Modeling (the 3D scene is conceptually defined by means of
vertices in a vectorial context)
Vertex Processing

Primitives (e.g. triangles) are defined
Primitives laying outside the clip space are discarded (clipping)
Hidden primitives are discarded (hidden surface removal)

Rasterization
The scene is converted into a raster image (image’s elements are
called fragments)

Fragment processing (a color is assigned to each fragment)
Output merging (combine the fragments of all primitives into color
pixels for the display)

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 4 / 51

Algorithms Clipping

Clipping

Clipping is the process that discards (entirely or partially) the
primitives that are outside the clip space
The primitives within the clip space are accepted, while the other
are eliminated or rejected
The primitives that are partially within the clip space are cut and
new vertices added in order to obtain a new primitive that is
entirely within the clip space

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 5 / 51

Algorithms Clipping

Clipping

Evaluating the intersections with the clip planes is the most
important computational effort in clipping algorithm

Accordingly, it is important to minimize the number of intersections
(since they require floating point operations)

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 6 / 51

Algorithms Clipping

Cohen-Sutherland’s clipping algorithm

Let consider the two-dimensional case (it is conceptually
equivalent to the three-dimensional one)

The edges of the clipping plane are ideally extended to the
infinitive by forming 9 regions
A 4 bit code O = b0b1b2b3, called outcode, is assigned to each
region

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 7 / 51

Algorithms Clipping

Cohen-Sutherland’s clipping algorithm

Outcodes are defined by the following rule:

b0 =

{
1 if y > ymax
0 if y ≤ ymax

Similarly, b1 = 1 if y < ymin

b2 and b3 are defined by relations between x and the left and right
edges of the clip region
Note that the clip region has outcode O = 0000

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 8 / 51

Algorithms Clipping

Cohen-Sutherland’s clipping algorithm

Case 1: O1 = O2 = 0000
Both outcode are 0000. The segment is INTERNAL
Case 2: O1&O2 6= 0000
The extremes are both up, down, to the left or to the right of the
clip window. The segment is EXTERNAL
Case 3: O1&O2 = 0000
The extremes are external but the line can not be rejected since it
could intersect the window. Intersections with the clip window’s
edges must be computed and if the line actually intersects the clip
region new vertces evaluated
Case 4: O1 6= 0000; O2 = 0000, or viceversa
The line is partially outside the clip window. In this case, the
vertex outside the window is replaced by a ne vertex resulting
from the intersection between the line and the clip window’s edge

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 9 / 51

Algorithms Rasterization

Scan conversion of segments

Starting from the vertices of the primitive projected into the
two-dimensional plane, the rasterization or scan conversion builds
the primitive as a set of fragments

Let us suppose the vertices composing the geometric primitives
have already been projected on a n ×m matrix with the origin
located at the bottom-left pixel
Let us suppose that each pixel is a square with the center at the
pixel coordinates and side equal to the distance between two
adjacent pixels

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 10 / 51

Algorithms Rasterization

The DDA line algorithm

Let us suppose to have a segment defined by its extremes (x1, y1)
and (x2, y2)

The slope of the segment is defined as:

m = ∆y/∆x

The most simple scan conversion algorithm evaluates m,
increments x (starting from the left extreme), and computes
yi = mxi + h, where h is the ordinata of the intersection between
the y axis and the line, for each xi

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 11 / 51

Algorithms Rasterization

The DDA line algorithm

The above strategy is inefficient since each iteration requires one
floating point multiplication and one floating point addition
It is possible to avoid the multiplication by adopting an incremental
strategy so that one pixel can be computed based on the previous
one
This algorithm is called DDA1

Each time x is incremented of ∆x , the corresponding variation ofy
must be ∆y = m∆x
Ranging form x1 to x2, x is incremented by 1 (i.e. the distance
between two pixels) and then y is incremented by ∆y = m

1The name comes from the Digital Differential Analyzer, a mechanical device able
to solve differential equations by applying a numerical methods

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 12 / 51

Algorithms Rasterization

The DDA line algorithm

Let us assume that 0 ≤ m ≤ 1 (the
other values can be treated
equivalently)

i n t x ;
f l o a t dy , dx , y , m;

dy = y2 − y1 ;
dx = x2 − x1 ;
m = dy / dx ;
y = y1 ;
for (x = x1 , x <= x2 , x++)
{

w r i t e P i x e l (x , round (y) ,
l i n e _ c o l o r) ;

y += m;
}

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 13 / 51

Algorithms Rasterization

Bresenham’s line algorithm

The DDA line algorithm is straightforward and easy to implement
but execs a floating point operation for each line’s pixel
At the contrary, the Bresenham’s line algorithm only performs
integer operations
Bresenham’s algorithm is faster than DDA and, for this reason, it
has become the most used line algorithm in Computer Graphics

Let us suppose to have a segment defined by its extremes (x1, y1)
and (x2, y2)

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 14 / 51

Algorithms Rasterization

Bresenham’s line algorithm

Let us suppose we are at an intermediate step of the algorithm
and the pixel (i , j) was the last to be switched on
As a consequence, when x = i the line y = mx + h intersects the
pixel (i , j)
When x = i + 1, the condition 0 ≤ m ≤ 1 implies that only one of
the pixels (i + 1, j) and (i + 1, j + 1) can be switched on
The choice can be expressed by means of a decision variable

d = b − a

where a and b are the measures of lines starting from the centers
of pixels (i + 1, j + 1) and (i + 1, j), respectively (as shown in the
next figure), to the line y = mx + h and parallel to the y axis

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 15 / 51

Algorithms Rasterization

Bresenham’s line algorithm

Definition of the decision variable d = b − a

If d > 0 then the line y = mx + h is closest to the pixel (i + 1, j + 1)

If d ≤ 0 then the line y = mx + h is closest to the pixel (i + 1, j)

d can be computed without the need of floating point operations
by means of a recurrence formula where di+1 is a function of di

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 16 / 51

Algorithms Rasterization

Bresenham’s line algorithm

Case di > 0

1 + bi+1 = bi + m⇒ bi+1 = bi + m − 1

ai+1 = 1− bi+1 = 1− (bi + m− 1) = 1− (1− ai + m− 1) = ai −m + 1

di+1 = bi+1 − ai+1 = bi − ai + 2m − 2 = di + 2m − 2 = di + 2(m − 1)

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 17 / 51

Algorithms Rasterization

Bresenham’s line algorithm

Case di ≤ 0

bi+1 = bi + m

ai+1 = ai −m

di+1 = bi+1 − ai+1 = bi − ai + 2m = di + 2m

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 18 / 51

Algorithms Rasterization

Bresenham’s line algorithm

So, we have

di+1 =

{
di + 2(m − 1) if d > 0
di + 2m if d ≤ 0

Since we are interested in the sign of d , we can multiply by
∆x = x2 − x1 (that is a positive quantity)

di+1∆x =

{
di∆x + 2(m − 1)∆x = di∆x + 2(∆y −∆x) if d > 0
di∆x + 2m∆x = di∆x + 2∆y if d ≤ 0

Eventually, we can impose di = di∆x (since both of them have the
same sign)

di+1 = di +

{
2(∆y −∆x) if d > 0
2∆y if d ≤ 0

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 19 / 51

Algorithms Rasterization

Bresenham’s line algorithm

As regard the initial value, d can
be set as follows:

d = 2(y2 − y1)− (x2 − x1)

In this manner
d > 0 when the angle is
> 22.5 degs (and the
North-East pixel is switched
on)
d ≤ 0 when the angle is
≤ 22.5 degs (and the East
pixel si switched on)

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 20 / 51

Algorithms Rasterization

Bresenham’s line algorithm

dx = x2 − x1 ; dy = y2 − y1 ;
d = dy ∗ 2 − dx ;
incrE = 2 ∗ dy ; incrNE = 2 ∗ (dy − dx) ;
x = x1 ; y = y1 ; w r i t e P i x e l (x , y , value) ;
while (x < x2) {

i f (d <= 0) {
d += incrE ;
x++;

}
else
{

d += incrNE ;
x++;
y++;

}
w r i t e P i x e l (x , y , value) ;

}

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 21 / 51

Algorithms Rasterization

Scanline polygon algorithm

The scanline algorithm is the reference algorithm for the scan
conversion of polygons
The algorithm uses scanlines to detect which pixels belong to the
polygon

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 22 / 51

Algorithms Rasterization

Scanline polygon algorithm

For each scanline, the intesections with the polygon’s edges are
evaluated and labeled with integer numbers (starting from 1)
The pixels between odd-even couples (1-2, 3-4, ecc.) are
switched on

Note that the scanline ya intersects the edges 5 times: In such a
case, the intersections 2 and 3 are considered as a single
intersection since they are obtained on monotone edges
At the contrary, the intersections 2 and 3 of the scanline yb are
valid since the common vertex represent a local minimum (or
maximum)

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 23 / 51

Algorithms Rasterization

Scanline polygon algorithm

The rasterization process starts from the bottom and from left to
right
Acoordingly, each next scanline differs by 1 along y

The edge’s slope is thus

m =
yi+1 − yi

xb − xa
=

1
xb − xa

and therefore
xb = xa +

1
m

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 24 / 51

Algorithms Rasterization

Scanline polygon algorithm

As a consequence, after the firt intesection (xa, ya), the
subsequent ones can be evaluated as (xb, yb) = (xa + 1/m, ya + 1)

The algorithm uses an edge table (ET), which is an array of
pointers with as many entries as the framebuffer’s scanlines

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 25 / 51

Algorithms Rasterization

Scanline polygon algorithm

If non-null, the j th ET entry points to the list of edges that have
minimum y equal to j
The edges of each ET entry are ordered per minimum abscissa
(xmin) in increasing order
The inverse of the edge’s slope (1/m) is also stored

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 26 / 51

Algorithms Rasterization

Scanline polygon algorithm

An active edge table (AET) is also considered, which stores
information about the edges intersected by the current scanline
Differently from ET data, the second edge’s information stores the
current abscissa (of the scanline-edge intesection), inspite of the
minimun one
The figure below shows the AET content at two different stages of
the algorithm, corresponding to the scanlines y = 11 and y = 18

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 27 / 51

Algorithms Rasterization

Scanline polygon algorithm

Once the ET has been defined, the algorithm processes the polygon
as follows:

1 set the ordinate of the current scanline to the ordinate of the firt
edge of the first entry of the ET (y = 5 in the example);

2 initialize AET to null (empty)
3 repeat the following steps until ET and AET are non empty:

move the edges with ordinate y to the AET
swhitch on the pixels between the odd-even intersections (1-2, 3-4,
etc)
remove the edges for which y = ymax from AET (since they will not
be interesected by the next scanline)
increments y by 1 and x by 1/m (this latter only if the edge is not
vertical)

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 28 / 51

Algorithms Hidden surface removal

Hidden surface removal

OpenGL rasterizes the primitives (e.g. triangles) in the order they
appear into the vertex buffer object (VBO)
In the case an object that is far from the observer is rasterized
after another object that is nearer, the former can be erroneously
overwriten (since it was first rasterized)
An hidden surface removal algorithm can be used in this case
(OpenGL adopts the z-buffer algorithm)

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 29 / 51

Algorithms Hidden surface removal

Surface Culling

In order to minimize the amount of work required by the hidden
surface removal algorithm, it is possible to remove one specific
face of the primitives from the rasterization process (e.g. the back
one, the face where the normal vector is applied or the face where
the vertices are enumerated in clockwise order)
If α denotes the angle between the normal vector and the
observer direction, the cosα > 0 condition (i.e. −90◦ < α < 90◦)
defines the primitive’s front face
The elimination of one or both primitive’s faces can be enabled by
means of the glCullFace. The following example enables the cull
face algorithm for the back faces

glEnable (GL_CULL_FACE) ;
g lCu l lFace (GL_BACK) ;

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 30 / 51

Algorithms Hidden surface removal

The z-buffer algorithm

The z-buffer works together with the scan conversion and needs a
further buffer called z-buffer to store depth information for each
pixel
The z-buffer is initialized to the distance between the observer and
the far clipping plane
During the scan conversion the distance of the pixel being
rendered and the observer can be computed
If this distance is lower than the distance stored into the z-buffer,
then the pixel is visible and the z-buffer is updated with the pixel’s
depth

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 31 / 51

Algorithms Hidden surface removal

The z-buffer algorithm

When the scan conversion of the polygon B is executed, its color
will appear on the screen since its distance z1 is less than the
distance z2 of the polygon A
At the contrary, when the scan conversion of the polygon A the
pixel corresponding to the intersection point will not appear on the
screen

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 32 / 51

Light

Table of contents

1 Algorithms
Clipping
Rasterization
Hidden surface removal

2 Light
The Phong Model
Shading

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 33 / 51

Light

Light

Light

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 34 / 51

Light Light-Matter Interaction

Light-Matter Interaction

Lighting Model

Is a mathematical formulation of the Light Equation

It is fundamental for photo realistic rendering
It defines how a point is lit as a function of:

position into the three-dimensional space
position of the (direct and indirect) sources
position of the observer
characteristics of the material

The following terms are used in the context of the light equation:

lighting, which refers to the amount of incident light radiation
shading, which refers to the evaluation of the resulting color

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 35 / 51

Light Light-Matter Interaction

Radiance Equation

Lo(ω,−→ωr) = Le(ω,−→ωr) + Lr (x ,Ω)

From a position x and direction −→ωr , the amount of outgoing light Lo is
the sum of the emitted light Le and of the reflected light Lr

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 36 / 51

Light Light-Matter Interaction

Radiance Equation

Lr is the sum of the lights rays Li incoming from any direction −→ωi times
cosθ by the surface’s reflection formula fr

Lr =

∫
Ω

Li(x ,−→ωi)(−→ωi ·
−→n)fr (x ,−→ωr ,

−→ωr)d−→ωi

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 37 / 51

Light The Phong Model

The Phong Model

The radiance equation is impossible to be evaluated in real time
with current hardware
OpenGL, which is a real time API for 3D Computer Graphics,
adopts the simplified Phong Model where:

Only directional and point light sources are considered
No inter-reflections are taken into account
The light equation is evaluated locally, thus possible occluders are
ignored
fr is approximated with three constants (that are used to
characterize the material of the reflecting surface)

As a consequence, the only simulated phenomenon is the
(specular and diffuse) reflection

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 38 / 51

Light The Phong Model

The Phong Model: diffuse reflection

The incoming rays are
uniformly reflected in any
direction
The amount of light does not
depend on the position of the
observer and is proportional to
the cosine of the angle
between the incoming light
and the surface normal
(Lambert’s law)

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 39 / 51

Light The Phong Model

The Phong Model: diffuse reflection

Phong’s diffuse equation

Idiff = Ipkdcosθ = Ipkd (
−→
N ·
−→
L)

Depends on:

Surface orientation,
−→
N

Light direction,
−→
L

The surface’s reflection
function, which is
approximated by the constant
kd

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 40 / 51

Light The Phong Model

The Phong Model: specular reflection

The angle between the reflected
light and the surface normal is equal
to the angle between the incoming
light and the normal (θi = θr)
As a consequence, the amount of
light depends on the position of the
observer

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 41 / 51

Light The Phong Model

Phong’s specular equation

Specular Equation

Ispec = Ipkscosnα = Ipks(
−→
R ·
−→
V)n

where ks is the constant used to
approximate the surface’s specular
reflection function

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 42 / 51

Light The Phong Model

The Phong Model: specular reflection

The specular reflection is perceived as a spot highlight that
depends on the position of the observer
The highest highlight is obtained when α = 0 and decreases
rapidly according to the law

(cosα)n

, where n ∈ [1,128] is called specular reflection exponent

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 43 / 51

Light The Phong Model

Phong ambient equation

It is used to model the inter-reflections

Phong’s ambient equation

Iamb = Iaka

where ka is a material dependent constant

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 44 / 51

Light The Phong Model

Complete formulation of the Phong Model

Complete formulation of the Phong Mode

I = Iaka +
∑

p

Ip
(

kd (
−→
N ·
−→
L) + ks(

−→
R ·
−→
V)n

)
The model can also account for the attenuation due to the distance by
means of an attenuation factor

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 45 / 51

Light Shading

Shading

The color of a fragment is evaluated by applying a shading model
The best shading model would consist in calculating the light
equation for each pixel of the final image
However, approximate solutions have to be adopted to obtain real
time applications, especially on old hw

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 46 / 51

Light Shading

Flat Shading

The flat shading, is the simplest shading model consisting into
evaluating the light equation once for the whole geometric
primitive
The same color is thus considered for each fragment of the
primitive

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 47 / 51

Light Shading

Gouraud shading

Exploits the linearity of the RGB color space: the color of an inner
fragment is obtained by linearly interpolating the colors of the
vertices
The light equation is thus evaluated for the vertices only
Both the surface’s normal (if known) or the average of the normal
vectors evaluated for the vertex (since it is shared by more than
one geometric primitive) can be considered

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 48 / 51

Light Shading

Gouraud shading

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 49 / 51

Light Shading

Phong shading

It is the more sophisticated shading model and is the most used in
the case of surfaces with a high specular reflection
In spite of interpolating colors, the Phong shading interpolates the
normals
The lighting equation is evaluated for all the inner fragments of the
geometric primitive by considering the interpolated normal vectors

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 50 / 51

Light Shading

Comparison of different shading models

Donato D’Ambrosio (University of Calabria) Academic Year 2018/19 51 / 51

	Algorithms
	Clipping
	Rasterization
	Hidden surface removal

	Light
	Light-Matter Interaction
	The Phong Model
	Shading

