
Answer Set Programming with Templates

Giovambattista Ianni, Giuseppe Ielpa,
Adriana Pietramala, Maria Carmela Santoro and

Francesco Calimeri
Mathematics Dept., Università della Calabria,

Via Pietro Bucci, 30B

87036 Rende (CS), Italy

E-mail: {lastname}@mat.unical.it

Abstract

The work aims at extending Answer Set Programming (ASP) with
the possibility of quickly introducing new predefined constructs and
to deal with compound data structures. We show how ASP can be
extended with ‘template’ predicate’s definitions by introducing a well-
suited form of second order logics. We present language syntax and
give its operational semantics. We show that the theory supporting
our ASP extension is sound, and that program encodings are evaluated
as efficiently as ASP programs. Examples show how the extended
language increases declarativity, readability, compactness of program
encodings and code reusability.1.

1This work has been partially funded by the EU research project IST-2002-33570 (IN-
FOMIX)

1

1 Introduction
Research on Answer Set Programming (ASP, in the following) produced sev-
eral, mature, implemented systems featuring clear semantics and efficient
program evaluation [10, 11, 23, 26, 1, 7, 22, 25, 6]. ASP has recently found
a number of promising applications: several tasks in information integration
and knowledge management require complex reasoning capabilities, which
are explored, for instance, in the INFOMIX and ICONS projects (funded by
the European Commission)[17, 16]. It is very likely that this new generation
of ASP applications require the introduction of repetitive pieces of standard
code. Indeed, a major need of complex and huge ASP applications such as
[24] is dealing efficiently with large pieces of such a code and with complex
data structures, more sophisticated than the simple, native ASP data types.
Indeed, the non-monotonic reasoning community has continuosly produced,
in the past, several extensions of nonmonotonic logic languages, aimed at
improving readability and easy programming through the introduction of new
constructs, employed in order to specify classes of constraints, search spaces,
data structures, new forms of reasoning, new special predicates [2, 9, 18],
such as aggregate predicates [4].
The language DLPT we propose here has two purposes. First, DLPT moves
the ASP field towards industrial applications, where code reusability is a
crucial issue. Second, DLPT aims at minimizing developing times in ASP
system prototyping. ASP systems developers wishing to introduce new con-
structs are enabled to fast prototype their languages, make their language
features quickly available to the scientific community, and successively con-
centrate on efficient (and long lasting) implementations. To this end, it is
necessary a sound specification language for new ASP constructs. ASP itself
proves to fit very well for this purpose.
The proposed framework introduces the concept of ‘template’ predicate,
whose definition can be exploited whenever needed through binding to usual
predicates. Template predicates can be seen as a way to define intensional
predicates by means of a subprogram, where the subprogram is generic and
reusable. This eases coding and improves readability and compactness of
ASP programs:

2

Example 1.1 The following template definition

#template max[p(1)](1)

{

exceeded(X) :- p(X),p(Y), Y > X.

max(X) :- p(X), not exceeded(X).

}

introduces a generic template program, defining the predicate max, intended
to compute the maximum value over the domain of a generic unary predicate
p. A template definition may be instantiated as many times as necessary,
through template atoms, like in the following sample program

:- max[weight(*)](M), M > 100.

:- max[student(Sex,$,*)](M), M > 25.

Template definitions may be unified with a template atom in many ways.
The above program contains a plain invocation (max[weight(*)](M)), and
a compound invocation (max[student(Sex,$,*)](M)). The latter allows to
employ the definition of the template predicate max on a ternary predicate,
discarding the second attribute of student, and grouping by values of the
first attribute. 2

The operational semantics of the language is defined through a suitable al-
gorithm which is able to produce, from a set of template definitions and a
DLPT program, an equivalent ASP program. There are some important
theoretical questions to be addressed, such as the termination of the algo-
rithm, and the expressiveness of the DLPT language. Indeed, we prove that
it is guaranteed that DLPT program encodings are as efficient as plain DLP
encodings, since unfolded programs are just polynomially larger with respect
to the originating program.
The DLPT language has been successfully implemented and tested on top
of the DLV system. In sum, benefits of the DLPT language are: improved
declarativity and succinctness of the code; code reusability and possibility
to collect templates within libraries; capability to quickly introduce new,
predefined constructs; fast language prototyping.
The paper is structured as follows: next section briefly gives syntax and
semantics of ASP and syntax of the language DLPT . Features of DLPT are
then illustrated by examples in section 3. Section 4 formally introduces the
semantics of DLPT . Theoretical properties of DLPT are discussed in section
5. In section 6 we describe architecture and usage of the implemented system.
Eventually, in section 7, conclusions are drawn.

3

2 Syntax of the DLPT language
We give a quick definition of the syntax and informal semantics of DLP pro-
grams2. We assume the reader to be familiar with basic notions concerning
with DLP semantics. A thorough definition of concepts herein adopted can
be found in [8]. A (DLP)rule r is a construct

a1 ∨ · · · ∨ an :− b1, · · · , bk, not bk+1, · · · , not bm.

where a1, · · · , an are standard atoms, b1, · · · , bm are literals, and n ≥ 0,
m ≥ k ≥ 0. The disjunction a1 ∨ · · · ∨ an is the head of r, while the
conjunction b1, ..., bk, not bk+1, ..., not bm is the body of r. A rule having
precisely one head literal (i.e. n = 1) is called a normal rule. A rule without
head literals (i.e. n = 0) is usually referred to as an integrity constraint (or
strong constraint).
A DLP program is a set of DLP rules. The semantics of a DLP program is
introduced through the Gelfond-Lifschitz transform as defined in [20]. Given
a DLP program P , we denote M(P) the set of stable models of P computed
according to the Gelfond-Lifschitz transform.
A DLPT } program is a DLP program, where rules and constraints may
contain (possibly negated) template atoms. Definition of template atoms is
provided in the following of this section.

Definition 2.1 A template definition D consists of:
- a template header,

#template nD[f1(b1) , ... , fn(bn)](bn+1)

where each bi(1 ≤ i ≤ n + 1) is a nonnegative integer value, and f1, . . . , fn

are predicate names, said in the following formal predicates. nD is called
template name;
- an associated DLPT subprogram enclosed in curly braces; nD may be used
within the subprogram as predicate of arity bn+1, whereas each predicate
fi(1 ≤ i ≤ n) is intended to be of arity bi. At least a rule having nD within
its head must be declared. For instance, the following is a valid template
definition:

#template subset[p(1)](1)

{

subset(X) v -subset(X) :- p(X).

}

2Disjunctive Logic Programming. Throughout this paper, we will adopt the first his-
torical definition of ASP [21] as synonym of Disjunctive Logic Programming.

4

Definition 2.2 A template atom t is of the form:

nt[p1(X1) , . . . , pn(Xn)](A)

where p1, . . . , pn are predicate names (namely actual predicates), and nt is a
template name. Each Xi(1 ≤ i ≤ n) is a list of special terms (referred in the
following as special list of terms). A special list of terms can contain either a
variable name, a constant name, a dollar ‘$’ symbol (from now on, projection
term) or a ‘*’ (from now on, parameter term). Variables and constants are
called standard terms. Each pi(Xi)(1 ≤ i ≤ n) is called special atom. A
is a list of usual terms (i.e. either variables or constants) called output list.
Given a template atom t, let D(t) be the corresponding template definition
having the same template name. 2

An example of template atom is max[company($,State,*)](Income). In-
tuitively, projection terms (‘$’ symbols) are intended in order to indicate
attributes of an actual predicate which have to be ignored. A standard
term (a constant or a variable) within an actual atom indicates a ‘group-by’
attribute, whereas parameter terms (‘*’ symbols) indicate attributes to be
considered as parameter. The intuitive meaning of the above template atom
is to define a predicate computing the companies with maximum value of the
‘income’ attribute (the third attribute of the company predicate), grouped
by the ‘state’ attribute (the second one), ignoring the first attribute. The
computed values of Income are returned through the output list.

3 Knowledge Representation by DLPT

In this section we show by examples the main advantages of template pro-
gramming. Examples point out the provision of a succinct, elegant and
easy-to-use way for quickly introducing new constructs through the DLPT

language.

Aggregates. Aggregate predicates allow to represent properties over sets
of elements. Aggregates or similar special predicates have been already built
in several ASP solvers [4, 26]: the next example shows how to fast prototype
aggregate semantics without taking into account of the efficiency of a built-in
implementation.
Here we take advantage of the template predicate max, defined in Example
1.1. The next template predicate defines a general program to count distinct
values of a predicate p, given an order relation succ defined on the domain
of p.

5

#template count[p(1),succ(2)](1)

{

partialCount(0,0).

partialCount(I,V) :- not p(Y), I=Y+1, partialCount(Y,V).

partialCount(I,V2) :- p(Y), I=Y+1, partialCount(Y,V),succ(V,V2).

partialCount(I,V2) :- p(Y), I=Y+1, partialCount(Y,V),max[succ(*,$)](V2).

count(M) :- max[partialCount($,*)](M).

}

The above template definition is conceived in order to count, in a iterative-
like way, values of the p predicate through the partialCount predicate. A
ground atom partialCount(i, a) means that at the stage i, the constant a
has been counted up. The predicate count takes the value which has been
counted at the highest (i.e. the last) stage value.
It is worth noting how max is employed over the binary predicate partialCount,
instead of an unary one. Indeed, the ‘$’ and ‘*’ symbols are employed to
project out the first argument of partialCount. The last rule is equivalent
to the piece of code:

partialCount’(X) :- partialCount(_,X).

count(M) :- max[partialCount’(*)](M).

Definition of ad hoc search spaces. Template definitions can be em-
ployed to introduce and reuse constructs defining the most common search
spaces. This improves declarativity of ASP programs to a larger extent. The
next two examples show how to define a predicate subset and a predicate
permutation, ranging, respectively, over subsets and permutations of the do-
main of a given predicate p. Such kind of constructs enriching plain Datalog
languages have been proposed, for instance, in [14, 2].

#template subset[p(1)](1)

{

subset(X) v -subset(X) :- p(X).

}

#template permutation[p(1)](2).

{

permutation(X,N) v npermutation(X,N) :- p(X),#int(N), count[p(*),>(*,*)](N1), N <= N1.

:- permutation(X,A),permutation(Z,A), Z <> X.

:- permutation(X,A),permutation(X,B), A <> B.

covered(X) :- permutation(X,A).

:- p(X), not covered(X).

}

The explanation of the subset template predicate is quite straightforward.
As for the permutation definition, a ground atom permutation(x, i) tells
that the element x (taken from the domain of p), is in position i within the
currently guessed permutation. The rest of the template subprogram forces
permutations properties to be met.

6

Next we show how count and subset can be exploited to succinctly encode
the k-clique problem [13], i.e., given a graph G (represented by predicates
node and edge), find if there exists a complete subgraph containing at least
k nodes (we consider here the 5-clique problem):

in_clique(X) :- subset[node(*)](X).

:- count[in_clique(*),>(*,*)](K), K < 5.

:- in_clique(X),in_clique(Y), X <> Y, not edge(X,Y).

The first rule of this example guesses a clique from a subset of nodes. The
first constraint forces a candidate clique to be at least of 5 nodes, while the
last forces a candidate clique to be strongly connected. The permutation

template can be employed, for instance, to encode the Hamiltonian Path
problem: given a graph G, find a path visiting each node of G exactly once:

path(X,N) :- permutation[node(*)](X,N).

:- path(X,M), path(Y,N), not edge(X,Y), M = N+1.

Handling of complex data structures. DLPT can be fruitfully em-
ployed to introduce operations over complex data structures, such as sets,
dates, trees, etc.
Sets: Extending Datalog with Set programming is another matter of interest
for the ASP field. This topic has been already discussed (e.g. in [18, 19]),
proposing some formalisms aiming at introducing a suitable semantics with
sets. It is fairly quick to introduce set primitives using DLPT ; a set S is mod-
eled through the domain of a given unary predicate s. Intuitive constructs
like intersection, union, or symmetricdifference, may be modeled as
follows.
#template intersection[a(1),b(1)](1).

{

intersection (X) :- a(X),b(X).

}

#template union[a(1),b(1)](1).

{

union(X) :- a(X).

union(X) :- b(X).

}

#template symmetricdifference[a(1),b(1)](1)

{

symmetricdifference(X) :- union[a(*),b(*)](X),not intersection[a(*),b(*)](X).

}

Dates: managing time and date data types is another important issue in
engineering applications of DLP. For instance, in [15], it is very important to
reason on compound records containing date values. The following template
shows how to compare dates represented through a ternary relation 〈day,
month, year〉.

7

#template before[date1(3),date2(3)](6)

{

before(D,M,Y,D1,M1,Y1) :- date1(D,M,Y), date2(D1,M1,Y1), Y < Y1.

before(D,M,Y,D1,M1,Y1) :- date1(D,M,Y), date2(D1,M1,Y1), Y == Y1, M < M1.

before(D,M,Y,D1,M1,Y1) :- date1(D,M,Y), date2(D,M1,Y1), Y == Y1, M = M1, D < D1.

}

4 Semantics of DLPT

The semantics of the DLPT language is given through a suitable ‘‘explosion’’
algorithm. It is given a DLPT program P . The aim of the Explode algorithm,
introduced next, is to remove template atoms from P . Each template atom
t is replaced with a standard atom, referring to a fresh intensional predicate
pt. The subprogram dt, defining the predicate pt, is computed taking into
account of the template definition D(t) associated to t. Actually, many
template atoms may be grouped and associated to the same subprogram.
The concept of atom signature, introduced next, helps in finding groups of
equivalent template atoms. The final output of the algorithm is a DLP
program P ′. Answer sets of the originating program P are constructed, by
definition, from answer sets of P ′. Throughout this section, we will refer to
Example 1.1 as running example.

Definition 4.1 Given a template atom t, the corresponding template sig-
nature s(t) is obtained from t by replacing each standard term with a con-
ventional (mute variable) ‘ ’ symbol. Let D(s(t)) be the template definition
associated to the signature s(t); Given a DLPT program P , let A(P) be the
set of template atoms occurring in P . Let S(A(P)) be the set of signatures
{s(t) : t ∈ A(P)}. 2

For instance, max[p(*,S,$)](M) has the same signature (max[p(*,_,$)](_))
as max[p(*,a,$)](H).

4.1 The Explode algorithm The Explode algorithm (E in the follow-
ing) is sketched in Figure 1. It is given a DLPT program P and a set of
template definitions T . The output of E is a DLP program P ′. E takes
advantage of a stack of signatures S, which contains the set of signatures to
be processed; a set U contains the already processed signatures. S is initially
filled up with each template signature occurring within P , while U is initially
empty.
The purpose of the main loop of E is to iteratively apply the U (Unfold) oper-
ation to P , until S is empty. Given a signature s, the U operation generates

8

Explode(Input: a DLPT program P , a set of template definitions T .
Outputs: an updated version of P ′ of P in DLP form.
Data Structures: a stack S, a set U)

begin
push S(A(P)) in S;
U = ∅; P ′ = P
while (S is not empty) do begin

pop a template signature s from S;

//Start of the U (Unfold) operation;
if (s 6∈ U)

construct P s (see Subsection 4.2), then set P = P ∪ P s;
push S(A(P s)) in S;

for each template atom a ∈ P
if a has signature s

construct the standard atom as(X′) (see Subsection 4.3);
replace a with as(X′);

//End of the U operation;

U = U ∪ {s}.
end;

end.

Figure 1: The Explode (E) Algorithm

from the template definition D(s) a DLPT program P s which defines a fresh
predicate ts, where t is the template name of s. In case s is being processed
for the first time (s 6∈ U), P s is appended to P ; furthermore, each template
atom a ∈ P , such that a has signature s, is replaced with a suitable atom
as(X′). It is important pointing out that, if P s contains template atoms, the
unfolding operation updates S with new template signatures.
We show next how P s is constructed and template atoms are removed.
Let the header of D(s) be

#template t[f1(b1) , . . . , fn(bn)](bn+1)

Let s be of the form

t[p1(X1) , . . . , pn(Xn)](Xn+1)

Given a special list X of terms, let X[j] denote the jth term of X; let fr(X)
be a list of |X| fresh variables FX,1, . . . , FX,|X|; let st(X), pr(X) and pa(X) be
the sublist of (respectively) standard, projection and parameter terms within
X. Given two lists A and B, let A&B be the list obtained appending B to
A.

9

4.2 How P s is constructed. The program P s is built in two steps. On
the first step, P s is enriched with a set of rules, intended in order to deal
with projection variables.
For each pi ∈ s, we introduce a predicate ps

i and we enrich P s with the
auxiliary rule ps

i (X
′
i) ← pi(X

′′
i), where:

- X′′
i is built from Xi substituting pr(Xi) with fr(pr(Xi)), substituting

pa(Xi) with fr(pa(Xi)), and substituting st(X) with fr(st(Xi));
- X′

i is set to fr(st(Xi))&fr(pa(Xi)).
For instance, given the signature s2 =max[student(_,$,*)](_) and the
example template definition given in Example 1.1, let L be the list 〈_,$,*〉;
it is introduced the rule:

students2(Fst(L),1, Fpa(L),1) :− student(Fst(L),1, Fpr(L),1, Fpa(L),1).

Note that projection variables are filtered out from students. In the second
step, for each rule r belonging to D(s), we create an updated version r′ to
be put in P s, where each atom a ∈ r is modified this way:
- if a is fi(Y) where fi is a formal predicate, it is substituted with the atom
ps

i (Y
′). Y′ is set to fr(st(Xi))&Y;

- if a is a either a standard (included atoms having t as predicate name) or
a special atom (in this latter case a occurs within a template atom) p(Y), it
is substituted with an atom ps(Y′), where

Y′ = fr(st(X1))& . . . &fr(st(Xn))&Y

Example 4.2 For instance, consider the rule

max(X):− p(X), not exceeded(X).

from Example 1.1, and the signature s2 = max[student(_,$,*)](_); let L
be the special list 〈 , $, ∗〉; according to the steps introduced above, this rule
is translated to

maxs2(FL,1, X):− students2(FL,1, X), not exceededs2(FL,1, X) 2

4.3 How template atoms are replaced. 3 Consider a template atom in
the form t[p1(X1) , . . . , pn(Xn)](Xn+1): it is substituted with ts(X′), where
X′ = st(X1)& . . . &st(Xn)&Y.

3Depending on the form of D(s), some template atom might not to be allowed, since
some atom with same predicate name but with mismatched arities could be generated.
We do not discuss here these syntactic restriction for space reasons.

10

Example 4.3 The complete output of E on the constraint

:−max[student(, $, ∗)](M), M > 100.

coupled with the template definition of max given in Example 1.1 is:

students2(S1, P1) :− student(S1, , P1).
exceededs2(FL,1, X) :− students2(FL,1, X), students2(FL,1, Y), X > Y.

maxs2(FL,1, X) :− students2(FL,1, X), not exceededs2(FL,1, X).
:− maxs2(Sex, M),M > 25. 2

We are now able to give the formal semantics of DLPT . It is important
highlighting that stable models of a DLPT program are, by definition, con-
structed in terms of stable models of an equivalent DLP program.

Definition 4.4 It is given a DLPT program P . Let P̂ be a DLP program
obtained from P by removing all the template atoms. The Herbrand base
H(P) of P is defined as the Herbrand base H(P̂) of P̂ . 2

Definition 4.5 Given a DLPT program P , and a set of template definitions
T , let P ′ the output of the Explode algorithm on input 〈P, T 〉. Given a stable
model m ∈ M(P ′), then we define H(P) ∩m as a stable model of P . 2

Note that the Herbrand base of a DLPT program is defined in terms of the
Herbrand base of a DLP program which is not the output of E .

5 Theoretical properties of DLPT

The explosion algorithm replaces template atoms from a DLPT program P ,
producing a DLP program P ′. It is very important to investigate about two
theoretical issues:
- Finding whether and when E terminates; in general, we observe that E
might not terminate. Anyway, we prove that it can be decided in polynomial
time whether E terminates on a given input.
- Establishing whether DLPT programs are encoded as efficiently as DLP
programs. In particular, we are able to prove that P ′ is polynomially larger
than P . Thus DLPT keeps the same expressive power as DLP. This way,
we are guaranteed that DLPT program encodings are as efficient as plain
DLP encodings, since unfolded programs are always reasonably larger with
respect to the originating program.

11

Definition 5.1 It is given a DLPT program P , and a set of template def-
initions T . The dependency graph GT,P = 〈V, E〉 encoding dependencies
between template atoms and template definitions is built as follows. Each
template definition t ∈ T will be represented by a corresponding node vt of
V . V contains a node uP associated to P as well. E will contain a direct edge
(ut, vt′) if the template t contains a template atom referred to the template
t′ inside its subprogram (as for the node referred to P , we consider the whole
program P). Let GT,P (u) ⊆ GT,P be the subgraph containing nodes and arc
of GT,P reachable from u. 2

Theorem 5.2 It is given a DLPT program P , and a set of template defini-
tions T . It can be decided in polynomial time whether E terminates when P
and T are taken as input.
Proof. (Sketch). It is easy to see that E terminates iff GT,P (uP) is acyclic.
Indeed, consider that each operation of unfolding corresponds to the visit of
an arc of GT,P (uP). If GT,P (uP) acyclic, E behaves like an in-depth, arc visit
algorithm, where no arc is visited twice.
Viceversa, if GT,P (uP) contains some cycle u, v1, . . . , vn, u, an infinite series of
new signatures will be produced and queued for processing. Indeed, assume
each arc (u, v1), (v1, v2), . . . , (vn, u) has been processed. After the (vn, u)
processing, the arc (u, v1) will be re-enqueued with a new signature, not
present in the set of used signatures U , thus causing an infinite loop. 2

Definition 5.3 A set of template definitions T is said nonrecursive if for
any DLPT program P , the subgraph GT,P (uP) is acyclic. 2

It is useful to deal with nonrecursive sets of template definition, since they
may be safely employed with any program. Checking whether a set of tem-
plate definitions is nonrecursive is quite easy.

Proposition 5.4 A set of template definitions T is nonrecursive iff GT,∅ is
acyclic.

Theorem 5.5 It is given a DLPT program P , and a nonrecursive set of
template definitions T . The output P ′ of E on input 〈P, T 〉 is polynomially
larger than P and T .
Proof. (Sketch). We simply observe that each execution of U adds to P a
number of rules/constraints whose overall size is bounded by the size of T . If
T is nonrecursive, the number of U operations carried out by E corresponds
to the number of arcs of GT,P . The number of arcs of GT,P is bounded by
the overall size of T and P . Thus the size of P ′ is O(|T |(|T |+ |P |)). 2

12

P PRE ARSER
DLPT

Program INFLATER

DLPT

I
F
nternal

ormat

DLPT

Program

ASP
SOLVER

C
M

ollection of

odels
P POST ARSER

F
M

iltered

odels

ASP

Figure 2: Architecture of the DLPT compiler

Corollary 5.6 DLPT has the same expressive power as DLP.
Proof. (Sketch). It is proved in [3] that plain DLP programs (under the
brave reasoning semantics) capture the ΣP

2 complexity class. DLPT pro-
grams may allow to express more succinct encodings of problems. Anyway,
since unfolded program produced by E are polynomially larger only, and
DLPT semantics is defined in term of the equivalent, unfolded, DLP pro-
gram, DLPT has the same expressiveness properties as DLP. 2

6 System architecture and usage
The DLPT language has been implemented on top of the DLV system [10,
11, 12]. The current version of the language is available through the DLPT

Web page [5]. The overall architecture of the system is shown in Figure 2.
The DLPT system work-flow is as follows. A DLPT program is sent to a
DLPT pre-parser, which performs syntactic checks (included nonrecursivity
checks), and builds an internal representation of the DLPT program. The
DLPT Inflater performs the Explode Algorithm and produces an equivalent
DLV program P ′; P ′ is piped towards the DLV system. The models M(P ′)
of P ′, computed by DLV, are then converted in a readable format through
the Post-parser module; the Post-parser filters out from M(P ′) informations
about internally generated predicates and rules.

7 Conclusions
We presented the DLPT language, an extension of ASP allowing to define
template predicates. The proposed language is, in our opinion, very promis-
ing: we plan to further extend the framework, and, in particular, we are
thinking about a) generalizing template semantics in order to allow safe forms
of recursion between template definitions, b) introducing new forms of tem-
plate atoms in order to improve reusability of the same template definition in
different contexts, c) extending the template definition language using stan-
dard languages such as C++. As far as performances are concerned, we point
out that these are strictly tied to performances of resulting DLP programs.
Nonetheless, this work aims at introducing fast prototyping techniques, and
does not consider time performances as a primary target4.

4We would like to thank Nicola Leone and Luigi Palopoli for their fruitful remarks.

13

References
[1] C. Anger, K. Konczak, and T. Linke. NoMoRe: A System for Non-Monotonic

Reasoning. In Logic Programming and Nonmonotonic Reasoning — 6th Inter-
national Conference, LPNMR’01, Vienna, Austria, September 2001, Proceed-
ings, number 2173 in Lecture Notes in AI (LNAI), pages 406–410. Springer
Verlag, September 2001.

[2] M. Cadoli, G. Ianni, L. Palopoli, A. Schaerf, and D. Vasile. NP-SPEC: An
executable specification language for solving all the problems in NP. Com-
puter Languages, Elsevier Science, Amsterdam (Netherlands), 26(2-4):165–
195, 2000.

[3] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expres-
sive Power of Logic Programming. ACM Computing Surveys, 33(3):374–425,
2001.

[4] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate func-
tions in disjunctive logic programming: Semantics,complexity,and implemen-
tation in DLV. International Joint Conference on Artificial Intelligence (IJ-
CAI 2003).

[5] The DLPT web site. http://dlpt.gibbi.com.

[6] D. East and M. Truszczyński. dcs: An implementation of DATALOG
with Constraints. In Proceedings of the 8th International Workshop on
Non-Monotonic Reasoning (NMR’2000), Breckenridge, Colorado, USA, April
2000.

[7] U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced Reasoning
Tasks using Quantified Boolean Formulas. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence (AAAI’00), July 30 – August
3, 2000, Austin, Texas USA, pages 417–422. AAAI Press / MIT Press, 2000.

[8] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving
Using the DLV System. In Jack Minker, editor, Logic-Based Artificial Intel-
ligence, pages 79–103. Kluwer Academic Publishers, 2000.

[9] T. Eiter, G. Gottlob, and N. Leone. Abduction from Logic Programs: Se-
mantics and Complexity. Theoretical Computer Science, 189(1–2):129–177,
December 1997.

[10] W. Faber, N. Leone, C. Mateis, and G. Pfeifer. Using Database Optimization
Techniques for Nonmonotonic Reasoning. In Proceedings of the 7th Interna-

14

tional Workshop on Deductive Databases and Logic Programming (DDLP’99),
pages 135–139. Prolog Association of Japan, September 1999.

[11] W. Faber, N. Leone, and G. Pfeifer. Experimenting with Heuristics for An-
swer Set Programming. In Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI) 2001, pages 635–640, Seattle,
WA, USA, August 2001. Morgan Kaufmann Publishers.

[12] W. Faber and G. Pfeifer. DLV homepage, since 1996.
http://www.dlvsystem.com/.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[14] S. Greco and D. Saccà. NP optimization problems in datalog. International
Symposium on Logic Programming. Port Jefferson, NY, USA, pages 181–195,
1997.

[15] Giovambattista Ianni, Francesco Calimeri, Vincenzino Lio, Stefania Galizia,
and Agata Bonfà. Reasoning about the semantic web using answer set pro-
gramming. In APPIA-GULP-PRODE 2003. Joint Conference on Declarative
Programming, pages 324–336, Settembre 2003. Reggio Calabria, Italy.

[16] The ICONS web site. http://www.icons.rodan.pl/.

[17] The Infomix web site. http://www.mat.unical.it/infomix.

[18] G. M. Kuper. Logic programming with sets. Journal of Computer and System
Sciences, 41(1):44–64, 1990.

[19] N. Leone and P. Rullo. Ordered logic programming with sets. Journal of
Logic and Computation, 3(6):621–642, 1993.

[20] V. Lifschitz. Foundations of Logic Programming. In G. Brewka, editor, Princi-
ples of Knowledge Representation, pages 69–127. CSLI Publications, Stanford,
1996.

[21] Vladimir Lifschitz. Answer set planning. In International Conference on Logic
Programming, pages 23–37, 1999.

[22] N. McCain and H. Turner. Satisfiability Planning with Causal Theories.
In Proceedings Sixth International Conference on Principles of Knowledge
Representation and Reasoning (KR’98), pages 212–223. Morgan Kaufmann
Publishers, 1998.

15

[23] I. Niemelä. Logic programming with stable model semantics as constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence,
25(3–4):241–273, 1999.

[24] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An
A-Prolog Decision Support System for the Space Shuttle. In Proceedings of
the 1st International Workshop on Practical Aspects of Declarative Languages
(PADL’99), number 1551 in Lecture Notes in Computer Science, pages 169–
183. Springer, 1999.

[25] P. Rao, K. F. Sagonas, T. Swift, D. S. Warren, and J. Freire. XSB: A System
for Efficiently Computing Well-Founded Semantics. In Proceedings of the 4th
International Conference on Logic Programming and Non-Monotonic Reason-
ing (LPNMR’97), number 1265 in Lecture Notes in AI (LNAI), pages 2–17,
Dagstuhl, Germany, July 1997. Springer Verlag.

[26] P. Simons. Extending and Implementing the Stable Model Semantics. PhD
thesis, Helsinki University of Technology, Finland, 2000.

16

