
Reasoning about the Semantic Web using Answer Set
Programming

Giovambattista Ianni, Francesco Calimeri, Vincenzino Lio, Stefania Galizia, and
Agata Bonf̀a

Department of Mathematics, Università della Calabria,
Via Pietro Bucci, 30B

87036 Rende (CS), Italy

Abstract. The paper discusses some innovative aspects related to the integration
of a framework based on Answer Set Programming in an Information Retrieval
Agent, namely, the Global Search Agent. In order to improve the original system
effectiveness, the GSA2 system introduces a new internal architecture based on a
message-passing framework and on an ontology description formalism (WOLF,
Web OntoLogy Framework), conceived in order to describe and make reasoning
on “facts about the web and the user”. The role of a central intelligence is played
by a reasoning system based on Answer Set Programming; it makes the Agent
able to take independent decisions. The high expressive power of Answer Set
Programming allows to describe, program and plan behaviors of the Agent easily
and quickly, and to experiment with any (even future) Information Retrieval strat-
egy. Both the System Architecture and WOLF are very general and reusable, and
constitute a very good and interesting example of actual exploiting of Answer Set
Programming for real applications.

1 Introduction

Disjunctive logic programs are logic programs where disjunction is allowed in the heads
of logical rules and negation may occur in the bodies of the rules. Such programs are
now widely recognized as a valuable tool for knowledge representation and common-
sense reasoning [6, 1]. One of the attractions of disjunctive logic programming (DLP)
is its capability of allowing the natural modeling of incomplete knowledge. The most
widely accepted semantics is theanswer sets semanticsproposed by Gelfond and Lif-
schitz [14] as an extension of the stable model semantics of normal logic programs
[13]. According to this semantics, a disjunctive logic program may have several alter-
native models (but possibly none), calledanswer sets, each corresponding to a possible
view of the world. The Answer Set Programming (ASP, in the following) community is
nowadays moving towards actual applications of this semantics [25,?,29, 9, 26]. ASP
points of strength are high expressiveness, declarativity, and easiness of program encod-
ing. Nonetheless, ASP cannot be directly exploited in many contexts where ‘decisions’
have to be taken at very high paces, such as real time systems, and agent systems.

This paper constitutes a very first example about the effort we are carrying out in
order to embed an ASP engine within an Agent architecture.

The Global Search Agent, illustrated in [16, 3], is a prototype conceived in order to
improve web search quality on both the recall (the percentage of documents covered
by a search engine) and the precision (the percentage of interesting documents covered
by a search engine), and to assist the user through user profiling techniques. It is, in a
sense, a very aggressive document collector. Much of the web retrieval techniques are
exploited and combined in a single framework:

– Meta-Searching: in order to enhance coverage, a lot of search engines are queried
in parallel [15, 17].

– Anticipated exploration: linked documents are explored and filtered in advance,
independently from user’s intervention [21].

– User profiling: the user is made able to express preference on selected documents
[4, 20].

– Document ontology design: the user can classify his search in a hierarchical taxon-
omy. Such “concept tree” information is employed to tailor the anticipated explo-
ration to a fine-tuned search space [19, 22].

The version of GSA herein presented (GSA2 or the Agent, in the following), in-
troduces an ASP reasoning module within the overall architecture: this allows a much
better integration of the former modules, and allows the Designer to experiment, com-
bine and evaluate any reasoning strategy in a quick, clear and declarative way.

Improvements and benefits of the new architecture can be resumed in the following
points:

1. the internal structure of GSA2 is conceived as a set of cooperating agents; each
agent is a specialized module plugged within the system giving the Agent its (many)
own capabilities; new functionalities might be easily added introducing new kinds
of agents;

2. a new Peer to Peer module is introduced, in order to allow the Agent to exchange
knowledge throughout a network of peer GSA2 instances;

3. a Web Ontology Framework (WOLF in the following) is introduced. WOLF con-
tains logic primitives intended to model the Web, the internal document ontology,
the user(s) profile(s), the web information sources (like traditional search-engines),
the document contents, and the interaction and knowledge exchange among peers;

4. the system is equipped with an internal (logic) reasoning engine. This allows the
Agent to take its own decisions about the way to retrieve information, answer to
user explicit and implicit requests, classify documents, and interact with peers.

This new architecture produces many benefits for the whole system, as well as for
the Developer, the Designer, the End User. In the next section we briefly show details on
how the system works, pointing out the internal multi-agent architecture, the message-
passing functionalities, the knowledge representation framework, the see-through mul-
tiple information retrieval capabilities, the relationships with the user.

We show then in Section 3 the core of the KatheRinE Agent (the Knowledge &
Reasoning Agent), its structure and the interactions with the rest of the system;

In Section 3.2 we present the Knowledge and Ontology Representation Framework,
as well as its main purposes (modelling document ontologies, knowledge exchange,

meta-search and user profiles). Some little pieces of code are then proposed in order to
give an idea of the ease and the power of ASP in this context. Eventually, the section 4,
quickly resumes the main aspects of the ideas and the actual system, discuss about the
current status of the prototype and the already decided improvements, as well as future
directions of the research.

2 System overview and architecture

The internal architecture is of GSA (Figure 1) is conceived as a multi-agent system,
where many (neither predefined nor fixed) types of agents interact through a message
passing strategy.

KatheRinE

LoUIse

KB

PiPpi

IRis

MEry

MaDdy

Delivery

HUB

Receiving

HUB

Data Transfer

Notification/Command Passing

KatheRinE

LoUIse

KBKB

PiPpiPiPpi

IRisIRis

MEryMEry

MaDdy

Delivery

HUB

Delivery

HUB

Receiving

HUB

Receiving

HUB

Data Transfer

Notification/Command Passing

Fig. 1. Architecture of the GSA2 system

Messages are of two kinds: “notifications” and “commands”. Notifications are sent
out when an agent intends to signal interesting events to the community of agents. For
instance, the loUIse agent (User Interface Agent), notifies the MaDdy agent ([Message
Delivery Agent) of any user interaction with the system (e.g. clicks on any links, text
typed in any field).

Commands represent requests of particular actions directed from agent to agent. For
instance, when the KatheRinE agent decides that it is worth to suggest a given document
to the user, it sends a suitable command message to loUIse.

Each kind of agent has its own vocabulary for notifications and commands it can
receive or send. The notification and commands dictionary has been conceived taking
in account the FIPA message format [12]; the final version of GSA2 will be able to
work using the JADE platform [10], in order to exploit an already well-know and tested
reality.

The current GSA system architecture includes the following agents:

1. MaDdy. The Message Delivery Agent. Messages are forwarded from senders to
receivers through MaDdy. This is not an agent in strict sense, since it acts as an
almost passive message delivery service.

2. KatheRinE. The Knowledge & Reasoning Agent. It acts as a central intelligence
module. KatheRinE builds up its own fact base capturing messages going through
itself. Furthermore, KatheRinE is able to perform reasoning, take decisions, and
deliver commands to other agents based upon its knowledge base. The internal
architecture of KatheRinE is explained in detail in Section 3.

3. MEry. The Metasearch Engine Agent. It is equipped with a collection of wrappers
able to query a given set of traditional search engines, throughout the world wide
web. This module has been redesigned since its first version, and now it has the
capability to (re)generate wrappers in a semi-automatic way interacting with the
user. MEry can be asked for a general keyword search, or for a search on a specific
search engine. As soon as they are available, MEry extracts sets of URLs from
results set of the search engines. Such sets of URLs are then notified to the system.

4. IRis. The Information Retrieval Agent. It embeds most of the technology intro-
duced with the first release of GSA. This module, on request, is able to: a) score
given documents with respect to a set of relevant keywords, b) classify documents,
c) extract words pertaining a given topic, d) explore the web graph on its own,
searching for relevant documents.

5. PiPpi. The Peer to Peer Agent. It manages the connections of a single GSA2 in-
stance to a network of GSA2 instances (the GSANetwork in the following), by
means of a suitable P2P platform. Through PiPpi the system is made able to share
knowledge from a system to another. In general, any kind of notification and com-
mand message can be sent and received to and from the GSA2 Network. This way,
the system becomes able to exchange knowledge about each single fact base.

6. loUIse. The User Interface Agent handles input and output to and from the final
user. It is able to record any user activity as well as assisting the user during her
retrieval activities.

3 The KatheRinE agent

As briefly introduced above, KatheRinE is the reasoning module of the GSA2system.
The role played by KatheRinE is central, since it basicallyimplementsthe behavior of
the system.

This module acts as intelligent supervisor-colleague for all other internal agents.
KatheRinE knows almost all about what happens inside of the Agent (i.e., some results
have been found, some documents have been scored, etc.) and outside of it (i.e., the user
has performed some activity, the P2P network has been queried, etc.), anda) chooses
what has to be remembered,b) decides if some reaction has to be performed, and which
one.

GSA2 adopts the Answer Set Programming (ASP, in the following1) as knowledge
representation and reasoning framework, and theDLV system as internal “engine”.

1 Name coined by Vladimir Lifschitz in the invited talk at ICLP’99, and widely preferred, lately,
to Disjunctive Logic Programming, or DLP.

There are many points scored by ASP andDLV that led us to these choices: first
of all, the formalism has a very high expressive power; as better exposed below, under
answer sets semantics, disjunctive logic programs completely capture the complexity
classΣP

2 . But, more interesting, the formalism is really highly declarative, and encoded
logic programs are usually very concise, simple, and quick to design. The two most
widespread ASP systems areDLV [7] and Smodels [28]. Due to space limitations,
we will assume the reader is familiar with ASP programming and the DLV system. A
thorough definition of concepts herein adopted can be found in [7].

3.1 Embedding the reasoning module

In order to provide the whole system with the ASP reasoning capabilities, we introduced
a mapping between the GSA message format and the answer set programming.

FB
WR

TR1

RB

TR2T0

T1

Tn

P0

P1

Pn

CALLERTS

REFRESHER

Data Transfer

Action Transfer

DLV UNWR
Message Command

FBFB
WRWR

TR1TR1

RB

TR2TR2T0

T1

Tn

P0

P1

Pn

T0

T1

Tn

T0

T1

TnTn

P0

P1

Pn

P0

P1

Pn

CALLERTSTS

REFRESHERREFRESHER

Data Transfer

Action Transfer

DLVDLV UNWRUNWR
Message Command

Fig. 2. Architecture of the KatheRinE agent

As it comes out from Figure 2, the KatheRinE agent is able to capture any mes-
sage going through MaDdy, and to send out messages as well. In order to have a fully
operating system from early stages of implementation, messages can bypass KatheR-
inE as well, allowing direct interaction among the other agents. When this “bypass”
pipe is employed, GSA2 behaves similarly to its former architecture. The behavior of
KatheRinE is two-folded. First, it captures any message going through MaDdy. This
way KatheRinE, populates its own fact base with knowledge about the past history of
the system, e.g. queries made by the user, documents retrieved, topics classified, best
performing external engines, “most reliable” external agents, etc. Second, it may react
to special notification messages (triggers) and answer by providing command messages
to other agents.

Figure 2 shows in detail how KatheRinE is conceived. An incoming messagem is
treated two ways:

1. A wrapper (WR) takesm and translates it in terms of a set of factsFm. Fm is then
transferred to the Fact Base (FB). This way any event is logged and available for
reasoning on it. WR takes advantage of a translation tableTR1, stating a mapping
among logical facts and the GSA2 messages.

2. The Reasoning Base (RB) consists of a set of couples{〈t0, p0〉, . . . , 〈tn, pn〉},
where eachti is a message trigger type, andpi is an associated logic program.
A trigger selector (TS) looks up within RB and finds whether the current message
trigger type appears in it. If this is the case (e.g.m is of typeti), then the corre-
sponding logic programpi is extracted from RB and submitted to the Caller. The
Caller then invokes theDLV system, asking for a model forpi ∪ FB. The result-
ing (best) modelM is then converted in a burst of GSA2 messages through the
unwrapper UNWR, which takes advantage of an inverse translation tableTR2.

Predicates stored in FB are classified astemporary(they persist on the fact base
a finite amount of time), orpersistent(they are stored permanently in FB, and persist
from session to session). The Refresher module is in charge to periodically purge FB
from temporary facts.

3.2 The WOLF framework

The WOLF (Web OntoLogy Framework) consists of a complete set of predicates in-
tended to describe the Web and the user in a logic model. It is designed in order to
comprehend as much as possible anything which the GSA programmer may want to
deal with within the reasoning engine. Following the classic distinction of the planning
field (see, e.g. [8]) predicates are divided in two main categories: fluents and actions.
Fluents models the Web and user status, whereas actions are employed in order to indi-
cate actions GSA2 should perform, in response to a given event.

Fluents are intended in order to describe:

1. Knowledge Exchange: trust links among agents, physical reliability and knowledge
of each agent.

2. Document Ontologies: topic taxonomies, relationships among concepts, documents
and keywords.

3. Meta Search Modelling: reliability and responsiveness of each search engine. Qual-
ity of the search engine with respect to any topic.

4. User profiling: explicit and implicit feedback from the user; documents visited,
time user has spent on them; Submitted queries, favorite search engines etc.

Reasoning is performed on some object types related each other: peers (remote
GSA2 instances), queries (set of keywords), documents (annotated lists of words and
hyperlinks), bunch of documents (generic set of documents), topics/concepts (nested
categories of documents), words.

For instance, WOLF includes predicates likeauthority(p,o,c) , stating that the
authority (competence) of the peerp on the objecto is given by the integer valuec;
or up(p,t) , which indicates the peerp was reported alive at timet. As for the web
structure modeling the framework includes primitives likelink(u1,u2) , which is true
if GSA knows that the documentu1 links u2. The existence of a queryq is modelled by
the factquery(q) , andconcept(c) means that there exists the category of documents
c. contains(c,d) states that the topicd is contained by the topicc.

Information retrieval interfacing is provided by facts likedocument_score(u,q,s) ,
meaning that the documentu scoress with respect to the queryq. word_score(w,c,s)

express that the wordw is related to the conceptc with scores.
As for Meta Search Modelling, a fact likeretrieved(u,m,q,t) , expresses that

at timet, documentu has been retrieved from the search-enginem when it has been
queried with queryq.

User activity is modelled as well, through predicates likevisited(u,u1,t) that
express the user has visited documentu at timet, coming from documentu1, or like
preferred(u,t) which states that the documentu has been added within the Fa-
vorites list of the user at timet.
In order to allow the Designer to fruitfully program knowledge sharing, each fluent fact
is equipped with standard attributes comprehending the time the fact has been generated
and an identification of the Agent which asserted the information. For the sake of read-
ability, and unless confusion may arise, we will omit such fields whenever they are not
necessary (for instance the factlink(u1,u2) is actually stored aslink(u1,u2,t,p)

wheret is the time the fact were asserted andp is the asserting peer).
Agents may be local (e.g. the current modules IRis, MEry,PiPpi and loUIse), or

remote (any peer from the GSA2 network).
Actions can be divided in the following main categories:

1. Requests for knowledge exchange: requests for lists of reachable agents, requests
for lists of experts on a given topic, requests for documents on a given topic.

2. Requests for document classification and mining: requests for evaluation and clas-
sification of documents, with respect to any given topic. Requests for significative
keywords representative of some topic.

3. Requests for meta-search: requests for set of documents for any topic, requests for
list of available search engines, etc.

4. Interaction with the user: requests to show a document, requests to present any kind
of information to the user.

Most important action predicates are in the formaskforobject(o) , whereo is
some kind of object (e.g. a document), or in the formaskforrelationship(o,o’) .
In the former case some agent is prompted to answer with information about the ob-
ject o, whereas in the latter case information about relationship between two objects
is requested. For instance, the actionaskforobject(q) , whereq is q query, if sub-
mitted to PiPpi, is intended in order to ask the whole GSA Network for the queryq.
askforrelationship(q,p) asks only the peerp instead.
Many actions concern document classification and mining: for instance,

– askforrelationship(u,q) , whereu is a document andq is a query, is answered
by IRis, with a factdocument_score(u,q,s) .

– askforrelationship(u,c) , whereu is a document andc a concept, asks an
agent about information on how the documentu could be classified inside the class
of documentsc.

– request_induction(c,s) (which is an alias toaskforrelationship(c,s)),
is employed to ask IRis in order to try to induce the conceptc from the bunch of
documentss.

As for meta-searching, we may cite, for instance,askengineforquery(m,q) (same
as
askforrelationship(m,q) , which asks meta-enginem for the queryq).
Some actions that are usually directed to the user interface (the loUIse agent) appear
like, e.g.,suggest_document(u) , which prompts the user interface to suggest the
documentu or suggest_query(q) , which prompts the user interface to suggest the
(possibly refined) queryq.

3.3 The KatheRinE lifecycle

We are now ready to present an example of the KatheRinE activity and some example of
built-in logic program the developer is able to design. Assume a messagem, of the kind
QueryRequestenters KatheRinE. This kind of message may come either from loUIse
(whenever the user submits a query in a suitable text field), or from some GSA2 peer
around the GSA2 network, asking for answers to a text query. Letm contain the query
q = { “search”,“engine”}. m is wrapped to a set of logical facts. In this case new facts
asserted on the internal fact base are:

query(qx00000000,20030402163056,"local.louise").
belongs("search",qx0000,20030402163056,1,"local.louise").
belongs("engine",qx0000,20030402163056,2,"local.louise").

Facts above tells KatheRinE thatq exists from April 2th, 2003, 16:30:56 UT, and
that this information has been asserted by the local agent loUIse. Words belonging toq
are asserted as well. IfQueryRequestbelongs to the trigger table, and we assume this is
the case, KatheRinE is prompted to perform some additional operation. In order to track
trigger events, these are labelled and associated with an order number, where0 corre-
sponds to the last trigger event. The facttrigger(qx0000,"local.louise",0) is
thus asserted. A logic program associated to theQueryRequestmessage type is then
invoked. Such program describes which action to take in this case. For instance, we
may want to answer by consulting search-engines, or taking advantage of the GSA2

network. Such a program sounds like the following:

1. t(Q,X) :- trigger(Q,X,0), query(Q).
2. suggest_object(U,X) :-

t(Q,X),
document_score(U,Q,S,_,_),
S > 500.

3. askforobject(Q,"local.meri") :- t(Q,"local.louise").
4. askforobject(Q,"local.pippi") :- t(Q,"local.louise").
5. askforobject(U2,"local.iris") :-

t(Q,"local.louise"),
suggest_object(U1,_), link(U1,U2,_),
not document_score(U2,Q,_,_,_).

The purpose of the above program is to take advantage of any resource in order to
answer the user request. Only the local fact base is consulted if the same request did
not come from the loUIse agent. In particular, rule (1) sends out to the user interface
any document already scored with respect the same query. Rule (3) and (4) activate
MEry (the meta-search module) and PiPpi (the peer to peer network) respectively, only
if the trigger event came from “local.louise ”, i.e. the user interface. Rule (5) ask
the IRis agent for an anticipated scoring of documents linked from already suggested
documents. The evaluation of the above program produces an unique modelM . M is

then unwrapped: in particular any action predicate occurring in it, is converted in a cor-
responding message. For instance, the fact
askforobject(qx0000,"local.pippi") is converted to a corresponding message
AskForObject, containing the requested query and directed to the PiPpi agent, whereas
suggest_object predicates are wrapped to messages usually directed to the user in-
terface.

This way, it is possible to program search strategies taking full advantage of the
logic programming declarativity. A few examples follow.

3.4 Managing Persistence of Interest

Profiling the user from her activity is an important issue. In general the GSA2 Agent
should continue autonomously its search process while the user is browsing. Anyway,
it is very important to detectpersistence of interest, i.e. to automatically understand
whether the user has changed her interest about a given topic during the browsing pro-
cess. This is, e.g. the aim to be achieved by assisting browsers such as Letizia [21].
The high power of the internal ASP-based language allows us to be very flexible to this
respect, and to program very easily strategies for detecting changes of interest, as the
following example shows.

We assume a queryq has been submitted in the past from the users. Usually KatheR-
inE reacts to queries asking one or more modules for relevant documents related toq.
External modules keep on sending documents depending on their internal strategy. It
is worth to note that many events may have happened meanwhile, indicating a change
of interest. Thus, suggested objects (i.e. thoseu such thatsuggestedObject(u,q)

is true for someq) coming from external agents are redirected to the user only in case
the user interest is still persistent. We assume the following program is associated to a
message of the kindSuggestObjects, usually containing a bunch of suggested objects.

1. t(Type, Object, Agent) :-
trigger(Type, Object, Agent, Position).

2. suggestObject(U, Agent) :- t("UserQuery", Query, Agent),
stillActive(Query), suggestedObject(U, Query).

3. stillActive(Query) :- query(Query, Time, _),
not contextChanged(Event, Time).

4. contextChanged(Query, Time) :- query(Query1, Time),
query(Query, Time1), Time1 > Time.

The meaning of this short piece of code is quite simple. Rule (1) considers all inter-
esting events (triggers). This rule can be changed in order to select past trigger events
worth to process with respect to the persistence of interest. Rule (2) expresses the cho-
sen interest policy: if some module retrieved any object meaningful for a given query,
it has to be notified to the subject that caused the trigger to fire, unless context changes
have arisen (rule (3)).

A context changecan be interpreted in many ways, and it is worth to note that it
can be easily described through just few rules. In this case, we wanted just to skip
all notifications if the user asked for a new queryafter the one the module should be
answering to. Considering other user events, we can enrich or modify this behavior:
it is not so difficult to imagine how to catch a context change due to some other user
activity, for instance through measuring time spent by the user on suggested pages, etc.

3.5 Selecting useful set of peers to be queried

One important issue regarding peer-to-peer networks is to ensure data persistency (at
least one alive peer must hold a given information), freshness (information must be up
to date as much as possible) and consistency (it should not exists two peers asserting
different things about the same object, and, if this is the case, data must be reconciled).
Such issues are solved through different approaches (see e.g. [24]).

In many cases, it is necessary to limit the number of peers to be consulted for a
given topic. At the same time peers which were recently reachable are preferable with
respect to elder peers. If the same information is stored at several sites, a lot of time
could be saved by querying only a restricted set. The following program suggest how
to implement a peer selection strategy based on the reduction of overlapping data, and
on the selection of freshest peers.

We assumeq is a query, and we want to ask the GSA2 network for this query.
Anyway, we prefer not to ask the whole network, but only the minimal set which guar-
antees the whole set of documents spread throughout the network is covered. In case
the same document is available at different sites, we prefer to query the freshest one.
The local GSA2 instance is aware of documents covered by each peer through facts of
the kinddocument_score(u,_,_,_,p) . Such a fact means that the peerp has some-
times scored the documentu, and presumably, it has indexed this document. The fact
currenttime(t) returns the current UT time, whereas a factup(p,t) tells that the
peerp has been reported alive at timet. A peer selection program could look like the
following:

1. t(Q) :- trigger(Q,_,0).
2. candidate(P,T) :- currenttime(T1),

up(P,T2),
T = T1-T2,
document_score(U,_,_,_,P).

3. tobecovered(U) :- document_score(U,_,_,_,_).
4. incover(P) v outofcover(P) :- candidate(P,T).

5. covered(U) :- tobecovered(U),
incover(P),
document_score(U,_,_,_,P).

6. :- document(U), not covered(U).
7. :˜ incover(P),candidate(P,T). [T:]
8. askforobject(Q,P) :- t(Q), incover(P).

The above program works as follows: we generate a table of candidate peers (rule
2) by means of thecandidatepredicate.candidate(p,t) will mean that the peer
p has been reported alivet seconds ago. Then, through rule 4, we take advantage of
disjunction in order to specify a search space where a candidate peer may be, or may
be not, part of the selected cover (incover(p) will mean thatp is part of the set to be
queried). Through rule 6, we filter out those subsets of candidates not covering every
document. The weak constraint of Line 7 weights each peer by its alive time, preferring
those peers with smaller alive time. Rule 8 performs the wanted action for those peers
belonging to the cover.

3.6 Trusted peers

Another issue arising in peer to peer systems is strictly tied to the problem of trust.
Peers may store aged and/or incorrect information at their site. Thus, each agent should
be in charge to choose its policy on trustworthiness.

In [11], the authors propose an approach based on the definition of a semantic policy
language. Each peer can choose a personal policy on trustworthiness; a client peer is
trusted on the basis of the policy of the server peer.
We show next how to implement a possible trustworthiness policy. Each peer is coupled
with a plausibility value, comparing data about documents present within the local fact
base (L) and in a given peer fact base (P). The rationale is that as much facts asserted
by a remote peerp can be locally verifiable, as muchp can be trusted.

In this case, we assume data a peer has to be trusted about is the ‘document matching
degree’, i.e. the degree of pertinence of a given document with respect to a given topic.

Let t be a given document category, andu a document, then we denote asSL(u, t)
the score (matching degree) ofu with respect the categoryt, stored in L, whereas
SP (u, t) will be the same value as stored inP . LetH = D(L)∩D(P), whereD(L) is
the document set stored within the local fact base andD(P) the document set stored in
peerP , then:

PlP (t) =
|{u ∈ H : SL(u, t) = SP (u, t)}|

|H|
is the plausibility index of the fact baseP with respect to the topict. PlP is given by
the ratio among the number of documents, stored with same score value, belonging toL
andP , and those that are both inP and inL (regardless of their score). The following
example creates a set of peers estimating trustworthiness and selecting peers where
plausibility exceeds a given threshold.

1. trusting_threshold(90).
2. normalize(P,N) :- peer(P), #count{U: document-score(U,_,S,_,"local.louise"),

document_score(U,_,S,_,P)} = M, N = M*100.
3. plausibility(P,R) :- normalize(P,N),

#count{U: document(U,"local.louise"),
document(U,P)} = M, div(N,M,R).

4. trusted(P) :- plausibility(P,R), trusting_threshold(T), R > T.

The meaning of the above program is the following: through rule (1), we set a
trusting threshold, then, by means of rules (2) and (3), we compute the plausibility
value for each peer (plausibility(p,r) will mean that the plausibility of the peerp
is r). Finally, rule (4) selects the set of trusted peers (a peerp is trusted iftrusted(p)

is true). The set of trusted peers can then be employed in any way the system designer
may want, e.g. for querying information.

4 Conclusions

In this paper we have described the new architecture of the GSA2 prototype, and, in par-
ticular, how an Agent reasoning on the basis of a logic programming framework can be
exploited to control the whole multi-agent system. The internal reasoning formalism al-
lows to easily specify different behaviors of the system, and to quickly implement any
Meta-search, Information Retrieval and Information Exchange strategy. We are cur-
rently working toward the complete integration of each module into the final GSA2

release. The next step of our ongoing research is to extend the KatheRinE architecture
in a more general fashion, in order to provide a more extended framework where ASP
can be exploited within multi-agent applications of any nature.

References

1. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2002. In press.

2. F. Buccafurri, N. Leone, and P. Rullo. Enhancing Disjunctive Datalog by Constraints.IEEE
Transactions on Knowledge and Data Engineering, 12(5):845–860, 2000.

3. A. Castellucci, G. Ianni, D. Vasile, and S. Costa. Surfing and searching the web using a semi-
adaptive meta-engine. InInternational Conference on Information Technology: Coding and
Computing (ITCC). Las Vegas, Nevada (USA), pages 416–420, 2-4 Aprile 2001.

4. E. Damiani, B. Oliboni, E. Quintarelli, and L. Tanca. Modeling users’ navigation history.
Seventeenth International Joint Conference on Artificial Intelligence, 2001.

5. T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate Functions in Dis-
junctive Logic Programming: Semantics, Complexity, and Implementation in DLV. InPro-
ceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI) 2003,
Acapulco, Mexico, August 2003. Morgan Kaufmann Publishers.

6. T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello.
The DLV System. In Jack Minker, editor,Workshop on Logic-Based Artificial Intelligence,
Washington, DC, College Park, Maryland, June 1999. Computer Science Department, Uni-
versity of Maryland. Workshop Notes.

7. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving Using the DLV
System. In Jack Minker, editor,Logic-Based Artificial Intelligence, pages 79–103. Kluwer
Academic Publishers, 2000.

8. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Using thedlv system for planning
and diagnostic reasoning. InProceedings of the 14th Workshop on Logic Programming
(WLP’99), pages 125–134. GMD – Forschungszentrum Informationstechnik GmbH, Berlin,
January 2000. ISSN 1435-2702.

9. Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scarcello.
Progress Report on the Disjunctive Deductive Database Systemdlv . In Troels Andreasen,
Henning Christiansen, and Henrik Legind Larsen, editors,Proceedings International Con-
ference on Flexible Query Answering Systems (FQAS’98), number 1495 in Lecture Notes in
AI (LNAI), pages 148–163, Roskilde University, Denmark, May 1998. Springer.

10. F. Bellifemine and A. Poggi and G. Rimassa. Developing Multi-agent Systems with a FIPA
compliant Agent Framework.Software - Practice and Experience, 31:103–128, 2001.

11. T. Finin and A. Joshi. Agents, trust, and information access on the semantic web.ACM
SIGMOD Record, 31:30–35, 2002.

12. FIPA (Fundation for Information Physical Agents) web site.http://www.fipa.org .
13. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In

Logic Programming: Proceedings Fifth Intl Conference and Symposium, pages 1070–1080,
Cambridge, Mass., 1988. MIT Press.

14. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases.New Generation Computing, 9:365–385, 1991.

15. N. Green, P. G. Ipeirotis, and L. Gravano. SDLIP + STARTS = SDARTS a protocol and
toolkit for metasearching. InACM/IEEE Joint Conference on Digital Libraries, pages 207–
214, 2001.

16. G. Ianni. Intelligent anticipated exploration of web sites.AI Communications, 14(4):197–
214, 2001.

17. P. G. Ipeirotis and L. Gravano. Distributed search over the hidden web: Hierarchical database
samplingand selection.28th International Conference on Very Large Data Bases (VLDB
2002), 2002.

18. D. Kazakov and D. Kudenko. Machine learning and inductive logic programming for multi-
agent systems.9th ECCAI Advanced Course ACAI 2001 and Agent Link’s 3rd European
Agent Systems Summer School, LNCS 2086:246–270, 2001.

19. J. U. Kietz, R. Volz, and A. Maedche. Extracting a domain-specific ontology from a corpo-
rate intranet. In Claire Cardie, Walter Daelemans, Claire Nédellec, and Erik Tjong Kim Sang,
editors,Proceedings of the 4th Conference on Computational Natural Language Learning
and of the 2nd Learning Language in Logic Workshop, Lisbon, 2000, pages 167–175. Asso-
ciation for Computational Linguistics, Somerset, New Jersey, 2000.

20. A. Kobsa, J. Koenemann, and W. Pohl. Personalized hypermedia presentation techniques for
improving online customer relationships, 2001.

21. H. Lieberman. Letizia: An agent that assists web browsing.Proc. of the 14th Int. Joint Conf.
on Artificial Intelligence, IJCAI 95, Montŕeal, Qúebec, Canada, pages 924–929, 1995.

22. A. Maedche and S. Staab. Learning ontologies for the semantic web. volume 16, pages
72–79, 2001.

23. T. Matsui, N. Inuzuka, and H. Seki. A Proposal for Inductive Lerning Agent Using First-
Order Logic. InTenth International Conference on Inductive Logic Programming (ILP2000),
July 2000.

24. W. Nejdl, B. Wolf, et al. Edutella: A P2P network infrastructure based on RDF. In11th
International WWW conference, May 2002.

25. Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and Matthew
Barry. An A-Prolog Decision Support System for the Space Shuttle. In Gopal Gupta, editor,
Proceedings of the 1st International Workshop on Practical Aspects of Declarative Lan-
guages (PADL’99), number 1551 in Lecture Notes in Computer Science, pages 169–183.
Springer, 1999.

26. Gerald Pfeifer. Tutorial: Answer Set Programming. 8th European Conference on Artificial
Intelligence (JELIA), Cosenza, Italy, September 2002.

27. F. Sadri, F. Toni, and P. Torroni. Logic agents, dialogues and negotiation: An abductive
approach.Proceedings of the Symposium on Information Agents for E-Commerce, AISB’01,
York, UK, March 2001.

28. P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model se-
mantics.Artificial Intelligence, 138:181–234, June 2002.

29. T. C. Son, C. Baral, and S. McIlraith. Planning with Different Forms of Domain-Dependent
Control Knowledge – An Answer Set Programming Approach. In Proceedings of,Logic
Programming and Nonmonotonic Reasoning — 6th International Conference, LPNMR’01,
LNAI 2173, pages 226–239. Springer Verlag, September 2001.

